DOI QR코드

DOI QR Code

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary

영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계

  • Kim, Se Hee (Department of Ocean System Engineering, Mokpo National Maritime University) ;
  • Sin, Yong Sik (Department of Ocean System Engineering, Mokpo National Maritime University)
  • 김세희 (목포해양대학교 해양시스템공학과) ;
  • 신용식 (목포해양대학교 해양시스템공학과)
  • Received : 2019.11.23
  • Accepted : 2019.12.09
  • Published : 2019.12.13

Abstract

Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.

해양 종속영양 박테리아는 수생태계에서 미소생물환의 주요 구성원으로 유기물의 분해 등 생지화학적 순환에서 중요한 역할을 한다. 해양 생태계의 물질 순환과 에너지 흐름을 이해하기 위해서는 박테리아의 변동에 대한 연구 조사가 중요하다. 본 연구는 방조제 건설로 변형된 영산강 하구 해수역을 대상으로 박테리아와 환경인자들의 월 변동 양상을 조사하였고, 박테리아 변동의 주요인자인 식물플랑크톤(chlorophyll-a)과의 상관성을 크기별로 구분하여 파악하고자 하였다. 연구 결과, 영산강 하구의 박테리아는 저층보다 표층에서 높은 개체수를 보였으며, 겨울철보다 여름철에 개체수가 높았다. 그리고 방조제에 가까울수록 개체수가 증가하였으며, 방조제와 가장 인접한 정점에서 2018년 8월, 9월 그리고 2019년 6월에 최대치로 증가하였다. 박테리아의 개체수가 높았던 정점과 시기에 식물플랑크톤의 생체량도 증가하면서 통계분석결과에서도 양의 상관성을 보였고 크기별로도 모두 유사한 상관성을 보였다. 이러한 결과는 식물플랑크톤 기원의 유기물이 박테리아 변동에 영향을 미치고 있고 크기별로 그 영향의 차이가 없음을 제시하고 있다. 또한 수온에 비례하여 증가하는 박테리아의 계절 분포는 박테리아의 성장에 대한 수온의 영향을 보여주는 결과라 볼 수 있다. 그 외에 간헐적인 담수 유입을 통한 영양염 공급과 박테리아의 개체수 변동의 연관성은 관찰되지 않았다. 본 연구에서는 또한 특정시기에 성층이 거의 없는 조건에서 용존산소가 고갈되는 빈산소층이 관찰되었는데 이는 식물플랑크톤 기원 유기물 공급과 박테리아의 분해로 인한 산소 소모의 결과로 추정된다.

Keywords

Acknowledgement

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1B05049865).

References

  1. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Rei LA, Thingstad F. 1983. The ecological role of water column microbes in the sea. Mar Ecol Progr Ser 126: 97-102.
  2. Bird DF, Kalff J. 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can J Fish Aquat Sci 41: 1015-1023. https://doi.org/10.1139/f84-118
  3. Bird DF, Kalff J. 1986. Bacterial grazing by planktonic lake algae. Science 231: 493-495. https://doi.org/10.1126/science.231.4737.493
  4. Cho BC, Choi JK, Chung CS, Hong GH. 1994. Uncoupling of bacteria and phytoplankton during a spring diatom bloom in the mouth of the Yellow Sea. Mar Ecol Prog Ser 115: 181-190. https://doi.org/10.3354/meps115181
  5. Cho BC, Park MG, Shim JH, Choi DH. 2001. Sea-surface temperature and f-ratio explain large variability in the ratio of bacterial production to primary production in the Yellow Sea. Mar Ecol Progr Ser 216: 31-41. https://doi.org/10.3354/meps216031
  6. Cho BC, Shim JH. 1992. Significance of Estuarine Mixing in Distribution of Bacterial Abundance and Production in the Estuarine System of the Mankyung River and Dongjin River, Korea. J Kor Soc Oceanogr 27: 154-163.
  7. Cho YG, Park KY. 1998. Heavy metals in surface sediments of the Youngsan Estuary, West Coast of Korea. J Environ Sci Int 7: 549-557.
  8. Cole JJ, Findlay S, Pace ML. 1988. Bacterial production in fresh and saltwater ecosystem: a cross-system overview. Mar Ecol Pro Ser 43: 1-10. https://doi.org/10.3354/meps043001
  9. Cole JJ, Pace ML. 1995. Bacterial secondary production in oxic and anoxic freshwaters. Limnol Oceanogr 40: 1019-1027. https://doi.org/10.4319/lo.1995.40.6.1019
  10. Diaz RJ, Rosenberg R. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33: 245-303.
  11. Diaz RJ. 2001. Overview of hypoxia around the world. J Environ Qual 30: 275-281. https://doi.org/10.2134/jeq2001.302275x
  12. Ducklow HW, Carlson CA. 1992. Oceanic bacterial production: In Advances in microbial ecology. Springer, Boston, MA 12: 113-181.
  13. Felip M, Pace ML, Cole JJ. 1996. Regulation of planktonic bacterial growth rates: The effects of temperature and resources. Micro Ecol 31: 15-28.
  14. Findlay S, Pace ML, Lints D, Howe K. 1992. Bacterial metabolism of organic carbon in the tidal freshwater Hudson estuary. Mar Ecol Prog Ser 89: 147-153. https://doi.org/10.3354/meps089147
  15. Hoch MP, Kirchman DL. 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar Ecol Prog Ser 98: 283-295. https://doi.org/10.3354/meps098283
  16. Jardillier L, Basset M, Domaizon I, Belan A, Amblard C, Richardot M, Debroas. 2004. Bottom-up and top-down control of bacterial community composition in the euphotic zone of a reservoir. Aquat Microb Ecol 35: 259-273. https://doi.org/10.3354/ame035259
  17. Kim SH. 2015. Ecological and biogeochemical processes in the Yeongsan River estuary, Yellow Sea. Department of environmental marine sciences. Doctor of philosophy. Graduate school of Hanyang University.
  18. Kimura H, Izumi M. 1994. Effect of oxygen deficiency of the sea bottom on environment of bay. Fish Eng 31: 41-45.
  19. Kormas KA, Kapiris K, Thessalou-Legaki M, Nico-laidou A. 1998. Quantitative relationships between phyto-plankton, bacter and protists in an Aegean semi-enclosed embayment (Maliakos Gulf, Greece). Aquat Microb Ecol 15: 255-264. https://doi.org/10.3354/ame015255
  20. Lee CW, Kudo I, Yanada M, Maita Y. 2001. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subartic coastal waters (Western North Pacific Ocean). Aquat Microb Ecol 23: 263-271. https://doi.org/10.3354/ame023263
  21. McDonough RJ, Sanders RW, Porter KG, Kirchman DL. 1986. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Appl Environ Microbiol 52: 992-1000. https://doi.org/10.1128/aem.52.5.992-1000.1986
  22. Naganuma T, Miura S. 1997. Abundance, production and viability of bacterioplankton in the Seto lsland Sea. Japan J Oceanogr 53: 435-442.
  23. Ochs CA, Cole JJ, Likens GE. 1995. Population dynamics of bacterioplankton in an oligotrophic lake. J Plankton Res 17: 365-391. https://doi.org/10.1093/plankt/17.2.365
  24. Painchaud J, Therriault JC. 1989. Relationships between bacteria, phytoplankton and particulate organic carbon in the Upper St. Lawrence Estuary. Mar Ecol Prog Ser 56: 301-311. https://doi.org/10.3354/meps056301
  25. Parsons TR, Maita Y, Lalli C. 1984. A manual of chemical and biological method for seawater analysis. Pergamon Press Inc., New York, pp 173.
  26. Plummer DH, Owens NJP, Herbert RA. 1987. Bacteria-particle interactions in turbid estuarine environments. Cont Shelf Res 7: 1429-1433. https://doi.org/10.1016/0278-4343(87)90050-1
  27. Pomeroy LR, Wiebe WJ. 1993. Energy sources for microbial food webs. Mar Microb Food webs 7: 101-118.
  28. Porter KG, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  29. Rabalais NN, Turner RE, Wiseman Jr WJ. 2002. Gulf of Mexico hypoxia, aka "The dead zone". Ann Rev Ecol Evol S 33: 235-263. https://doi.org/10.1146/annurev.ecolsys.33.010802.150513
  30. Ritter C, Montagna PA. 1999. Seasonal hypoxia and models of benthic response in a Texas bay. Estuaries 22: 7-20. https://doi.org/10.2307/1352922
  31. Ryther JH. 1969. Photosynthesis and fish production in the sea. Science 166: 72-76. https://doi.org/10.1126/science.166.3901.72
  32. Sherr EB, Sherr BF. 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710-711. https://doi.org/10.1038/325710a0
  33. Shiah FK, Ducklow HW. 1994a. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol Oceanogr 39: 1243-1258. https://doi.org/10.4319/lo.1994.39.6.1243
  34. Shiah FK, Ducklow HW. 1994b. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar Ecol Prog Ser 103: 297-308. https://doi.org/10.3354/meps103297
  35. Shim JH, Shin YK, Cho BC. 1993. The roles and the inter relationship between bacteria and phytoplankton in estuarine system of Mankyung and Dongjin rivers. Korea J of Kor Soc Oceanogr 28: 107-113.
  36. Sim JH, Kim YS, No I, Park YC, Park JG, Park C, Sin YG, Yang SR, Yang JS, Yeo HG, Yu SJ, Lee DS, Lee WH, Jeong HJ, Jo BC, Cha SS, Choi JK. 2010. Heterotrophic micro-plankton. Plankton ecology. 4st ed. Seoul National University, Korea. pp 155-171.
  37. Simon M, Cho BC, Azam F. 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar Ecol Progr Ser 86: 103-110. https://doi.org/10.3354/meps086103
  38. Sin Y, Jeong B. 2015. Short-term variations of phytoplankton communities in response to anthropogenic stressors in a highly altered temperate estuary. Estuar Coast Shelf Sci 156: 83-91. https://doi.org/10.1016/j.ecss.2014.09.022
  39. Sin Y, Lee E, Lee Y, Shin K-H. 2015. The river estuarine continuum of nutrients and phytoplankton communities in an estuary physically divided by a sea dike. Estuar Coast Shelf Sci 163: 279-289. https://doi.org/10.1016/j.ecss.2014.12.028
  40. Stachowitsch M. 1984. Mass mortality in the Gulf of Trieste: the course of community destruction. Mar Ecol 5: 243-264. https://doi.org/10.1111/j.1439-0485.1984.tb00124.x
  41. Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105: 15452-15457. https://doi.org/10.1073/pnas.0803833105
  42. Wainright SC. 1990. Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Mar Ecol Prog Ser 62: 271-281. https://doi.org/10.3354/meps062271
  43. Walsh JJ. 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol Oceanogr 21: 1-13. https://doi.org/10.4319/lo.1976.21.1.0001
  44. Weiss RF. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res 17: 721-735.
  45. Weisse T. 1991. The annual cycle of heterotrophic freshwater nomoflagellates: role of bottm-up versus top-down control. J Plankton Res 13: 167-185. https://doi.org/10.1093/plankt/13.1.167
  46. White PA, Kalff J, Rasmussen JB, Casol JM. 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21: 99-118. https://doi.org/10.1007/BF02539147
  47. Yang EJ, Choi JK, Hyun JH. 2003. The study on the seasonal variation of microbial community in Kyeonggi Bay, Korea. I. Bacteria and heterotrophic nanoflagellates. J Kor Soc Oceanogr 8: 44-57.
  48. Yoon B-B, Lee E-J, Kang T-A, Shin Y-S. 2013. Long-term change of phytoplankton biomass (chlorophyll-a), environmental factors and freshwater discharge in Youngsan Estuary. Korean J Ecol Environ 46: 205-214.
  49. Zarkanellas AJ. 1979. The effects of pollution-induced oxygen deficiency on the benthos in Elefsis Bay, Greece. Mar Environ Res 2: 191-207. https://doi.org/10.1016/0141-1136(79)90018-7