• Title/Summary/Keyword: Digital state feedback

Search Result 96, Processing Time 0.031 seconds

Nonlinear State Feedback for Minimum Phase in Nuclear Steam Generator Level Dynamics

  • Jeong, Seong-Uk;Choi, Jung-In
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.66-70
    • /
    • 1997
  • The steam generator level is susceptible to the nonminimum phase in dynamics due to the thermal reverse effects known as "shrink and swell" in a pressurized water reactor. A state feedback assisted control concept is presented for the change of dynamic performance to the minimum phase the concept incorporates a nonlinear digital observer as a part of the control system. The observer is deviced to estimate the state variables that provide the true indication of water inventory by compensating for shrink and swell effects. The concept is validated with implementation into the steam generator simulation model.

  • PDF

Design of State Feedback Controller for Fuzzy Systems: Intelligent Digital Redesign (퍼지 시스템을 위한 샘플치 데이터 상태 피드백 제어기 설계: 지능헝 디지털 재설계 접근)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2480-2482
    • /
    • 2005
  • This paper presents a complete solution to intelligent digital redesign problem (IDR) for sampled-data fuzzy systems. The IDR problem is the problem of designing a sampled-data state feedback controller such that the sampled-data fuzzy system is equivalent to the continuous-time fuzzy system in the sense of the state matching. Its solution is simply obtained by linear transformation. Under the proposed sampled-data controller, the states of the discrete-time model of the sampled-data fuzzy system completely matches the state of the discrete-time model of the closed-loop continuous-time fuzzy systems are completely matched at every sampling points.

  • PDF

A study on the optimal feedback control using a microcomputer (마이크로 컴퓨터를 이용한 최적 피이드백 제어에 관한 연구)

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.41-49
    • /
    • 1987
  • Recently microcomputers have come into wide use in the field of control. They are used not only as monitors and or controllers in various plant control systems but also for Computer Aided Design of control systems. In this paper, authors propose a method to design the reduced order observers for the higher order systems and have digital simulation of time responses of the optimal state feedback control system using the maximum principle. And the real time optimal state feedback control system for the third order plant which is realized by an anolog computer is constructed by means of a microcomputer, A/D converter and D/A converter. Time responses of the real time control system are compared with those obtained by the digital simulation and their well coincedence is confirmed.

  • PDF

Complex LMS Fuzzy Adaptive Equalizer with Decision Feedback (판정궤환이 있는 복소 LMS 퍼지 적응 등화기)

  • 이상연;김재범;이기용;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2579-2585
    • /
    • 1996
  • In this paper, a complex fuzzy adaptive decision feedback equalizer(CFADFE) based on the LMS algorithm is proposed. The propoed equalizer is based on the complex fuzzy adaptive equalizer. The CFADFE isconstructed from a set of changeable complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state from a set of changealble complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state of the desision feedback. the role of decision feedback is to reduce the computational complexity. Computer simulation of the decision feedback. The role of decision feedback is to reduce the computational complexity. Computer simulation shosw that the CFADFE notonly reduces the computational complexity but also improves the performance compared with the conventional complex fuzzy adaptive equalizers. We also show that the adaptation speed is greatly improved by incorporating some linguistic information about the channel into the equalzer. It is applied to M-ary QAM digital communication system with linear and nonlinear complex channel characteristics.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

Design of optimal control system of nuclear reactor for direct digital control (원자로의 직접 디지탈 제어를 위한 최적 제어계통의 설계)

  • 천희영;박귀태;이기상
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.509-516
    • /
    • 1981
  • The optimal control theory is applied to the design of a digital control system for a nuclear reactor. A linear dynamic model obtained at 85% of rated power and a quadratic performance index are used. A minimal order observer used in cascade with the feedback controller is suggested as a state estimator. The total reactor power control is studied in the range of 80% to 100% of rated power, with the steady state and load-following control. The control algorithm considered is suitable for implementation in direct digital control.

  • PDF

Digita Redesign of Observer-Based Output Feedback Controller

  • Lee, Ho-Jae;Park, Jin-Bae;Cho, Kwang-Lae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64.5-64
    • /
    • 2002
  • This paper concerns a new digital redesign (DR) technique for an observer-based output-feedback control (OBOFC) system. The term DR involves converting an analog controller into an equivalent digital one in the sense of state-matching. The considered DR problem is formulated as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separation principle on the DR of the OBOFC is explicitly shown. A numerical example is included for visualizing the feasibility of the proposed technique.

  • PDF

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Implementation of Robust Prediction Observer Controller for DC-DC Converter

  • Shenbagalakshmi, R.;Raja, T. Sree Renga
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1389-1399
    • /
    • 2013
  • A discrete controller is designed for low power dc-dc switched mode power supplies. The approach is based on time domain and the control loop continuously and concurrently tunes the compensator parameters to meet the converter specifications. A digital state feedback control combined with the load estimator provides a complete compensation, which further improves the dynamic performance of the closed loop system. Simulation of digitally controlled Buck converter is performed with MATLAB/Simulink. Experimental results are given to demonstrate the effectiveness of the controller using LabVIEW with a data acquisition card (model DAQ Pad - 6009).

Optimal Control of Nuclear Reactors by Digital Computer (전자계산기에 의한 원자로최적제어)

  • 천희영;박귀태
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.66-71
    • /
    • 1977
  • In this paper a method is presented for the optimal control of a nuclear reactor at equilibrium state by use of a digital computer. Using the optimal control theory, we formulate the control problem of the reactor as a discrete-time linear regulator problem. A quadratic performance index is defined. The effects of choosing different performance index weighting matrices to the feedback gain matrix and reactor transient responses are studied for the deterministic optimal control with all state variables accessible to measurement.

  • PDF