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Abstract

The optimal control theory is applied to the desige of a digital control system for a nuclear

reactor. A linear dynamic model obtained at 85% of rated power and a quadratic perfor

mance index are used. A minimal order observer used in cascade with the feedback controller

is suggested as a state estimator. The total reactor power control is studied in the range of

80% to 100% of rated power, with the steady state and load-following control.

The control

algorithm considered is suitable for implementation in direct digital control.

1. Introduction

The design of the optimal computer control
system of nuclear reactors or nuclear power plants
is of great importance, because it has been comp-
letely accepted that safety, reliability and economy
of their operation depend to a great extent on
their control system.

There have been many studies undertaken in
the past vears on the control system design of the
nuclear reactor by the use of modern control
theory.-' But, in almost all of these papers,
concentrations are focused mainly on the studies
of steady state control aspects. Furthermore, these
studies are performed under the assumption that
all the state variables are measurable. But, in
practice, all the state variables are not always
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measurable. Therefore, to realize this control

scheme, it is required for the optimal control
system to include the estimator which estimates
the unmeasurable state variables from the infor--
mations of measured state variables and of inputs.
As a state estimator, observer is selected.

The objective of this study is to design an opti-
mal control system of a nuclear reactor for both
the steady state control and load-following control.
The control approach adoped here is basically a
regulator control coupled with a feedforward
action from the load demand. The control algorit-
hms are designed to be implemented by direct
digital control(DDC).

The design approaches employed in this paper
have the following steps. The first is the design
of the feedforward controller which calculates
reference values of the state and control variables
corresponding to the power demand. The second
is the design of an optimal feedback controller for

the nuclear reactor assuming that all the state-
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-variables can be measured. The third is the const
ruction of an observer which reconstructs the
inaccessible state variables from the measured
input and output informations of the reactor.
‘Finally, the optimal digital control system is rea-
dized.

Since the optimal constant feedback gain matrix
varies with the values of the weighting factors in
-the quadratic performance index, appropriate val-
ues of the weighting factors are selected through
-computer simulations and the observer is designed
by Gopinath’s method*” which is simpler and more
.efficient than other methods.

The simulation studies for a nuclear reactcr
control system are performed for various operatirg
conditions: 1) reactivity disturbances are inserted
at the equilibrium conditions. 2) demand power
‘varies with ramp change and/or with step change,
Finally, comparisons are made between two cases,
namely, accessible case where all state variables
.can be measured and inaccessible case where some

.state variables cannot be measured.

2. Design of Direct Digital Control
System

2.1 Reactor Dynamics®’

The point-model kinetics equations for a nuclear
reactor with one-group delayed neutrons are

nlh) - "k“)‘ﬁ 2(8) +Ac() @
2D — B py—2e) ®
‘where

»(f)=nuclear power

Jdk(f)=reactivity

p=fraction of delayed neutrons
I=average neutron lifetime

A=decay constant of neutron precursor
c(t)=equivalent

delayed neutron precursor
density
‘If the following variables are defined
ap S ©)

p(t)éik—ﬁ(i @
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and substituted into Egs. (1) and (2), a set of

normalized equations is obtained. Thus,

D —aptynt)—an®)+ax®) ®

d%z?‘ =2{n(@®—=z() @

where p(#) is reactivity in dollars, p(#) is defined
in terms of the control variable », for which we
adopt the rate of change in reactivity to prevent
the occurrence of abrupt change of reactivity in
control sequence;

do(t) _
— =t ® €)

where £ is an arbitrary given constant.
The Eqs. (6), (7) and (8) are expressed in matrix

notation as;

Z=f(Z,u)

J=Uh fo fo)T €)]

=[n z p)"

where

fimap@n(E) —an(t) +az(t)

Ffo=An(E)—Az()

Ja=§u(®)
In Eq. (9,

denote the transpose and time derivative of the

the vector T and £ respectively
state variable .

The controlsystem considered here is one that
controls the deviations of state vector z from the
reference state vector * during the power transition
period.

Let us specify a feedforward reference control
u*(L) is a function of the power demand L. The
w*(L) can then be used to find the steady state
reference state vector, xz*(L), by solving

f@*, u*)=0 (10)
Therefore,
z*¥=L, z,*=L, z:*=0, u*=0.

Assume that the feedforward controller keeps the
reactor close to the reference values. This suggests
that one can linearize Eq.(9) and get

8z=A)0xr+B(t)u (11
where

FTAY—T* Jubu—ut
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“The matrices A and B are above designated as
time variant, to reflect the fact that x*(#) and
u*(#) are in general time dependent. In this paper,
however, these matrices are considered time in
variant with their elements evaluated at some
arbitrarily specified power level (in this case 85%
-of rated power) in order to reduce computation
time during direct digital control (DDC).

Since a DDC is considered, the linear equations
above have to be transformed into discrete time
-difference equations.® If it is assumed that du(f)
is constant between the sampling instants 27 and
(B+DT, ie.,

ou()=0u(kT) for RT<t<(k+1DT a2
where T=sampling interval,
we may interate Eq. (11) and obtain the difference
-state equation asfollows;
6T (B+1)=P3 (k) +Qou(k) (13)
~where
Pzexp(AT):I+AT+%(AT)2+“'
Q=(P—-DA'B a9
=T{I+2—11AT+?1!—(AT)2+-~-}B
ox(B)=0x(&T) /
I=unit matrix
Typically, g=0.0065, 7=10"%sec, and A=0. 0775sec™?
for a commercial nuclear reactor®®, By assuming
that £=1 and T=lsec, P and Q are calculated at
the 85% of the rated power level;
1.3183E-02 9.8684E-01 8.9401E-01 \
1.1766E-02 9.8823E-01 5.5216E-02
. 0.0 0.0 1.0 J

7. 3661E~01 ]

P=

Q =| 2.4155E-02
1.0
The discrete-time linear model described by Eq.
(13) will be the basis for the feedback control
-that is be described in the next section.

2.2 Optimal Feedback Control

Consider the deterministic feedback control prob-
lem for a system modeled by Eq. (13). A perfor-
‘mance index is defined as follows;

JN—_——%—E:} (BTT (B XGT (B) +rdu(h))} (15)

-where weighting matrix X and constant » can be
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chosen freely, required that X>0 and »>0O. The
problem is to find the optimal control that will
minimize Jy. This problem is solved by using the
discrete maximum principle“®. The solution is

Su(k)=—H(k)ox (k) (16)
The feedback gain matrix H(%) is obtained from

H(B)=r"Q"(PT) ' [G(B)~X] an
where G(k) is obtained by computing Riccati

equation, Eq. (18) backwards, starting with G(N)
G(B)=X+P'G(k+1) [I+r*QQ"G(2+1)]P (18)
Unless there is a good reason for choosing a
particular value for N, one can just as well cons-
ider N»1, in which case a constant feedback
gain matrix results. This gain matrix H depends
on the relative magnitudes of the coefficients in
the weighting matrix X and . Conditions for
convergence and uniqueness of the Riccati equation
have been established by Caine and Mayne."?
The main reason for choosing the square perfor-
mance index is the advantages resulting from
dealing with a constant feedback gain. The weig-
hting matrix X and the weighting constant » have
to be assigned by trial and error and by consider-

ing the eigen values of the closed loop system,
P—QH.

2.3 Nuclear Performance Index

The general performance index given by Eq.
(15) can be written in expanded form as a function
of the nuclear power deviation, reactivity, and

reactivity rate;
N-1
Ty =5 S 0n*(R) +ap" (k) + b () (19

where a and & are weighting coefficients. By co-
mparing Eq. (15) with Eq. (19), the weighting
matrix X and weighting constant » can be obtai-
ned as follows;

' 0 0
X=/0 0 0|, »=b
00 a

The optimal control law obtained by using the
performance index, Eq. (19), will minimize the
sum of the squares of nuclear power deviation and

the reactivity at the sampling instants.
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2.4 State Estimator

In the nuclear reactor system, the delayed neut-
ron precursor density and reactivity cannot be
measured. Therefore, for the optimal control of
the nuclear reactor these state variables are to be
estimated from the informations of measured nuc-
lear power and input.

We chocse the observer as a state estimator.
Basically, there are two kinds of observers, nam-
ely, full order observer which reconstructs all the
state variables and minimal order observer which
reconstructs only the unmeasurable state variables.
“%, Toreduce transient errors caused by parameter
perturbations, we select the minimalorder observer,
which is designed by the use of Gopinath’s meth-
od.””

POWER
DEMAND CIGITAL CONTROLLER

1]

1| FEEDFCRWARD | U (L) o> UIK |} ZERQ | | CONTROL
L ;| CONTROLLER ™ Holb ROD

E XL SUK) : 17

i

i FEEDBACK | 1 REACTOR |

! CONTROLLER || |

| WG

! STATE '

i ; ESTIMATOR | |

i ' |

: R VK -
E _——r:—@:::[z\: DETECTOR

Fig. 1. Digital control system cf a nuclear reactor

Sirce only nuclear power is measurable, the
measurement variable y(#) is related to the state

vector as

Yy =Cr{t) &)
where,

C={10 0]
Thus,

Sy(BY=Cox (k) @n

Consider the reactor dynamic equations described
by Eq. (13) and Eq. (21)
0T (k+1)=P (k) +Q du(k) (22)
oy(k)=Cox (k)
Assume that C is of the form C=(1,,0], p<=n
where I, is the identity matrix, » is the number
of measurable state variables and » is the dimen-
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sion of state variable vector. Then the state vector

can be partitioned as follows;

sz ®O={57:0)]

where
dr{k)=measurable state vector (5x1)
6¥,(k)=unmeasurable state vector ((z—p)X1)
Therefore, the original system Eq. (22) can be

represented as twosub-systems:

i3]l 2] B 1+ (8w
23

Now, the design procedure will be described in
the form of two theorems for clarity.

Theorem 1: If (C, P) is completely observable,
then (P, P,:) is also completely observable.

Theorem 2 : There exists an observer of dimen-
sion (z—p) for the system of Theorem 1.

Proofs of these theorems are omitted because
they are well presented in Gopinath’s work.®”
From these two theorems, observer dynamics can
be obtained as follows.

84:(B+1)=(pr—p12) 62k)—Dp16z:(k)
+ 202 (k) +(p2a—Dp1s) 62.(B)—(DQ1—Q:)
dulk) @
where 04,(%) is estimated state vector of 0%,(k).
Then, the design problem is only to find a matrix
D such that (P;;—DP,;) has arbitrary eigenvalues.

2.5 Description of Digital Control System

The digital control system of a nuclear reactor
for DDC is shown in Fig. 1. The digital controller
consists of two parts. The feedforward controller-
calculates reference values of the state and control
variables corresponding to the power demand. The
feedback controller with observer finds an optimal
control correction term to minimize the deviation
between the reference and actual state values.

The reactor is initially operating at a constant
power level with the optimal control input =«*(L).
When state variables deviate from the reference
values on account of some external reactivity dist-
urbances (in the case of steady state control) or
power demand change from one power level to
another (in the case of load-following control), the
digital controller computes the deviation and mo--
difies the control input from «* to «*+d&« in such.
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manner as to minimize a given performance index.
Comparing the actual and estimated state values
with reference values, the digital controller detects

the error signal,

sah=[F{{]- (28]

and calculates the control correction term byuthe

use of the optimal feedback gain precalculated off-

line and stored in the digital computer as follows;
Su(k)=—H 6z(k)

The actuating signal u(k) is obtained as[the sum

of z*(%) and du(k) and serves as the control input

to the reactor system.

3. Results and Discussions

3.1 Feedback Gain Matrix

The feedback gain matrix is given as a solution
to Eq. (17) for the sampling period 7T=1sec. With
P and Q determined, the numerical values of H(k)
in the interval k=N~OQO are calculated by the use
of recurrence Egs. (17) and (18), letting G(N)=0
for given values of X and r. It is shown that if
P, Q, X, r are time invariant, G(N)=0O and the
system is controllable then G(Z) becomes constant
as k—co so that the gain matrix X becomes cons-
tant matrix, v

Appropriate values of weighting factors were
found by taking into account the transient respo-
nses of reactor until satisfactory performance is
obtained for a variety of conditions at several
power levels. In this paper, it was found that sat-
isfactory perfcrmance was obtained for a=0.01
and 5=0.01. Thus, feedback gain matrix used
here is

H=71,4365E—02 1.2966E 00 1.1843E 00
These values were then used in all of the simul-
ations to be discussed in the following.

3.2 CObserver dynamics

The eigenvalues of the reactor system expressed
by Eq. (22) are 1.0, 1.0 and 0.0014, respectively.
Since the convergence rate of observer dynamics
should be larger than that of reactor system, the
eigenvalues of the observer are selected such that
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DIGITAL
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WRITE RESULY

WRITE RESULT

Fig. 2. Flow chart of digital simulation

observer has that property. Therefore, two eigen-
values of the observer are arbitrarily selected as
0.8 and 0.001, respectively. Consequently, matrix
D is obtained as;

15811
D= "3 5%

Therefore, the observer dynamics is obtained by
the use of Eq. (24),
o= 555 _Lzigpaso+[ 15611
sulk) + _ Y H2Js 2.0
3.3 Performance of Digital Control System

To examine the performance of the digital cont-
rol system described in Sec. 2.5, transient respo-

4

nses of reactor for a variety of conditions are
simulated for the case of all the state variables
accessible to measurement and for the practical
case where some state variables cannot be measu-
red and should be estimated. Most of transients
are obtained only on the initial 30 seconds, which
in most cases is adequate for illustrations.

Fig. 2. shows a flow diagram of the program
In the digital
simulations the computing delay and control delay

used to simulate reactor transients.

are neglected to simplify the simulation study.
Fig. 3. shows the reactor transient responses
with a disturbance of reactivity p=0.1 ($) when
the reactor is operating at the constant power
level of 85% of rated power. A step change of
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reactivity at any instants gives rise to the prompt
jump in nuclear power. In practical sense, distur-
bance can be inserted at any time. Three cases are
shown in Fig. 3.

The first is the case which a reactivity distur-
bance is occurred at Ty=0.0 sec, (7T, represents
the time when disturbance is inserted). In accessi-
ble case where all state variables are measurable,
the digital control system detects the reactivity
deviation at ¢=0.0 sec because allstate variables
are measured and modifies instantaneously the
actuating signal to the control rod to reduce the
reactivity disturbance to zero quickly. But, in
inaccessible case where reactivity is unmeasura-
ble, the control system detects the nuclear power
deviation at the next sampling instant. Therefore,
control rod is actuated after exactly one sampling
period. Thus the overshoot of nuclear power is
larger in latter case than in former case.

The second and third cases are T,=0.5 sec and
T.=0.9 sec, respectively. In this cases, the trans-
jents of these two control schemes are nearly same
because the control system actuates the control rod
at the same time, £=1.0 sec.

Fig. 4 shows the simulated responses to a 10%
step increase in power demand frrom 80% to 90%
of rated power at £=0.0 sec. This is a considera-
ble change in demand. In transient responses of a
ccessible and inaccessible cases, some degree of
discrepancies exist. But, since these discrepancies
decrease rapidly to zero in about 6 seconds, these
can be neglected for control purposes.

Fig. 5 shows the response to a ramp increase in
load demand. The power demand is determined

L=(0.8--0.0052) x100%, 0=<<t<20 sec

L=90% t>20 sec
i.e., the demanded load change is 0.5%/sec, which
corresponds to 30%/min. This is an adequate rate
of change. One can note that severe overshoots in
the nuclear power are avoided when a ramp load
change is considered since an abrupt change in
reactivity is not occurring. The actual nuclear
power is delayed for about one sampling period,
because the digital controller begins to sense the

power deviation after one sampling period.
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Fig. 3. Transients following a step reactivity
disturbance. (CASE I; accessible case,
CASE TI; inaccessible case and Td is the
time when disturbance is inserted)

4. Conclusions

In this study, the design of optimal digital
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Fig. 4. Transients following a 10% step increase
in power demand

control system for a nuclear reactor is treated for
a steady state control and load-following control.
The dynamic equations of the nuclear reactor are
nonlinear, which are linearized at the constant
power level of 85% of rated power. The feedback
controller is designed by the use of this linearized
time invariant model and a square performance
index.

As a state estimator we designed the minimal
.order observer by Gopinath’s method to estimate
the delayed neutron precursor density and reacti-
vity. This observer is proved to give good estim
ated values by simulation studies.

Simulation studies are performed for various
operating conitions in the range of 80%~100% of
rated power and for each condition, the characte-
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Fig. 5. Transienst following a 0.5%/sec (for 20
sec) ramp change in power demand

ristics of two control schemes, namely, accessible
case and inaccessible case compared. The compari-

sons show that the control show that the control

system which contains the observer has very
good transient characteristics in all cases.
In the control of whole power range, the sugg-

ested time invariant model does not seem to be the
best approach. To solve this problem, it is desirable
for the digital controller to memory several
linearized models obtained in advance at appropr-
iate power levels and switch from one model to

another according to corresponding power levels.
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