• Title/Summary/Keyword: Digital relays

Search Result 68, Processing Time 0.033 seconds

Improving Motor Protection Using Thermal Model (열 모델을 이용한 전동기 보호성능 개선)

  • Chang, Choong-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.473-479
    • /
    • 2015
  • Thermal relays are sometimes used instead of long time overcurrent relays for motor protection. But, it is difficult for any relay design engineer to adequately approximate motor heating curves which represent the average of a difficult-to-define thermal zone. Thermal relays frequently may not provide sufficient protection on heavy overloads. Digital multifunction relays are microprocessor-based devices. These relays offer highly reliable and advanced protection of motors. If a situation can be mathematically described, the microprocessor in a digital relay can be programmed to tackle that problem. Today's motor protection is accomplished with digital protective relays. Digital relays offer additional, highly important features to complement protection. The best way to prevent short in motor is to not overheat and degrade the insulation.

A Dynamic Simulation of Distance Relay Using EMTP MODELS (EMTP MODELS를 이용한 거리 계전기 응동 시뮬레이션)

  • 허정용;김철환;여상민
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Digital technology has advanced very significantly over the years both in terms of software tools and hardware available. It is now applied extensively in many area of electrical engineering including protective relaying in power systems. Digital relays based on digital technology have many advantages over the traditional analog relays. The digital relay is able to do what is difficult or impossible in the analog relays. However, the complex algorithms associated with the digital relays are difficult to test and verify in real time on real power systems. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations have the disadvantage that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used, but the latter needs large space and it is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is constructed and the distance relay is interfaced with a test power system. The distance relays performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including debugging by using EMTP MODELS.

Protective Relay Modeling of Generator Using Real Time Digital Simulator (RTDS를 이용한 발전기 보호계전기 모델링)

  • Cho, Y.S.;Lee, W.H.;Shin, J.H.;Kim, T.K.;Jang, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.155-157
    • /
    • 2005
  • Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. This paper presents the protective relay modeling of generator using Real Time Digital Simulator(RTDS). The developed model is applied to the test system and the simulation results are evident that they performs satisfactory.

  • PDF

High Capacity Relay Protocols for Wireless Networks

  • Fan, Yijia;Krikidis, Ioannis;Wang, Chao;Thompson, John S.;Poor, H. Vincent
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.196-206
    • /
    • 2009
  • Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

New Coordination Approach to Minimize the Number of Re-adjusted Relays When Adding DGs in Interconnected Power Systems

  • Ibrahim, Doaa Khalil;El Zahab, Essam El Din Abo;Aziz Mostafa, Saadoun Abd El
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.502-512
    • /
    • 2017
  • The presence of DGs in power system networks tends to negatively affect the protective relays coordination. The proposed method introduces an approach to minimize the numbers of relays that acquire new settings on contrary to their original settings (case without DG), to achieve relays coordination in case of adding DG, since relays coordination with minimum number of relays of re-adjusted settings represents economical target, especially in networks containing mixture of electromechanical and adaptive digital relays. The scheme decides the possible minimum number of re-adjusted relays and their locations in an optimum manner to achieve proper relays coordination in case of adding DGs. The proposed approach is divided into two successive phases; the first phase is stopped when the first relays coordination solution is achieved. The second phase increases the possibility to keep higher number of relays at their original settings than that obtained in first phase through achieving multi solutions of relays coordination. The proposed approach is implemented and effectively tested on the well-known IEEE-39 bus test system.

Development of the Automative Correction System for the Digital Over-current Relay With Distribution System (배전계통에서의 디지털 과전류 계전기 자동 정정 시스템 개발)

  • Baek, Young-Sik;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.677-682
    • /
    • 2007
  • In the distribution system, Change of system happens frequently. However, most of the relays are operated manually by a person or not changed when system changed. So, when fault happened, a case that relaydoes not act rapidly happens. Also, in current power system, digital relays are used because of digitization of relay. Digital relay has very many advantages than existing analog relay. One of these advantages is that communication is available and easily can make characteristic curve. If specific values are sent to a relay by communication, A relay can make suitable characteristic curve according to the value. In this paper, by using voltages and currents measured by relay, state of CB(Circuit Breaker) and these relays, SCADA(Supervisory Control And Data Acquisition) system that control and correct characteristic curve of overcurrent relay at system change by using HMI(Human Machine Interface) is proposed.

Development of Digital Relay Simulation Program (디지탈 릴레이 시뮬레이션 프로그램의 개발)

  • Choi, Sang-Dong;Shin, Dae-Seng;Moon, Young-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.51-54
    • /
    • 1992
  • Protection and control systems play a prominent part in avoiding power delivery interruptions and help to get a fast and secure restoration when a failure occurs. In order to meet the higher functional requirements on modern power system, protection speed, selectivity, sensitivity, dependability, and security are essential to ensure reliability. These functions on be satisfied by taking advantage of microprocessor and communication technologies, and digital protection relays (systems) have been developed and applied to real power system enhancing reliability and saving money. It is necessary to have a tool to analyze the functions and algorithms of digital relays for installing them to power system. The purpose of this study is to develop a digital relay simulation program to estimate digital relay performances during system faults. Components of digital protective relay including analog filter, sampling unit, digital filter, and relay logic are modeled in this program.

  • PDF

Simulation of the Distance Relay Using EMTP MODELS

  • J.Y. Heo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.26-32
    • /
    • 2004
  • Digital technology has advanced significantly over the years both in terms of software tools and hardware availability. It is now applied extensively throughout many area of electrical engineering including protective relaying in power systems. Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. Although non real-time simulators like PSCAD/EMTDC are employed to test the algorithms, such simulations are disadvantaged in that they cannot test the relay dynamically. Hence, real-time simulators like RTDS are used. However, the latter requires large space and is very expensive. This paper uses EMTP MODELS to simulate the power system and the distance relay. The distance relay algorithm is implemented and the distance relay is interfaced with a test power system. The distance relay's performance is then assessed interactively under various fault types, fault distances and fault inception angles. The test results show that we can simulate the distance relay effectively and we can examine the operation of the distance relay very closely including its drawbacks/limitations by using EMTP MODELS. Equally important, this approach facilitates any changes that need to be carried out in order to enhance the Distance Relay under test/examination.

Implementation and Verification of Distance Relay Models for Real Time Digital Simulator (실시간 전력계통 시뮬레이터를 이용한 보호계전모델 개발)

  • Lee, Joo-Hun;Yoon, Yong-Beum;Cha, Seung-Tae;Lee, Jin;Choe, Jong-Woon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.393-400
    • /
    • 2003
  • This paper discusses how to implement and verify a software model of the digital relay that can be added to real time digital simulator(RTDS) model library and is then subjected to the same outputs as the actual relay. The software model is stand-alone and can be used with real relays. It is also possible to conduct interactive real-time tests when the system effects of the relay action need to be investigated. The characteristics of mho type and the quadrilateral type, which is commonly used in recently developed relays, are modeled in this paper. Single circuit line and double circuit line system are used for model verification. The transmission lines are each 100 km in length and are modeled as distributed parameter lines but not frequency dependent. The transmission lines in the single circuit system are modeled as ideally transposed line. The mutual coupling data with the parallel line was taken account in the transmission lines for the double circuit system. The main CTs and PTs are included and operated in their linear region during the tests. For the purpose of testing the relay model accuracy the faults have been applied at various points on the protected line. Its accuracy is assessed against theoretical values.