• Title/Summary/Keyword: Digital image correlation technique

Search Result 119, Processing Time 0.03 seconds

Analysis of Thermal Deformation of Co-bonded Dissimilar Composite considering Non-linear Thermal Expansion Characteristics of Composite Materials (비선형 열팽창 특성을 고려한 이종 접합 복합재의 열변형 해석)

  • Kim, Jeong-Beom;Kim, Hong-Il;Jeon, Ho-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.809-815
    • /
    • 2014
  • The co-bonded dissimilar composite under a wide range of temperature change shows thermal distortion due to the differences in thermal expansion characteristics of the composite materials. Analysis of the thermal expansion characteristics of each composite is required for the design of co-bonded dissimilar composite structure with considering the shape distortion during the manufacturing process. In this work, digital image correlation (DIC) technique is introduced for measuring the thermal distortion characteristics of co-bonded dissimilar composite specimen, carbon/epoxy and silica/phenolic. The thermal distortion of co-bonded dissimilar composite specimen is numerically estimated and compared with the experiments. The estimated results is successfully validated using the measured results.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

A Generation of Digital Elevation Model for GSIS using SPOT Satellite Imagery (GSIS의 자료기반 구축을 위한 SPOT 위성영상으로부터의 수치표고모형 생성)

  • Yeu, Bock-Mo;Park, Hong-Gi;Jeong, Soo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.141-152
    • /
    • 1993
  • This study aims to generate digital elevation model from digital satellite imagery. Digital elevation model is being increasingly used for geo-spatial information system database development and for digital map production. Image matching technique was applied to acquire conjugate image coordinates and the algorithm for digital elevation model generation is presented in this study The exterior orientation parameters of the satellite imagery is determined by bundle adjustment and standard correlation was applied for image matching conjugate of image points. The window as well as the searching area have to be defined in image matching. Different sizes of searching area were tested to study the appropriate size of the searching area. Various coordinate transformation methods were applied to improve the computation speed as well as the geometric accuracy. The results were then statistically analysed after which the searching area is determined with the safety factor. To evaluate the accuracy of digital elevation model, 3-D coordinates were extracted from 1/5000 scale topographic map and this was compared to the digital elevation model generated from satellite imagery. The algorithm for generation of digital elevation model generated from satellite imagery is presented in this study which will prove effective in the database development of geo-spatial information system and in digital elevation modelling of large areas.

  • PDF

Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis

  • Mai, Hang-Nga;Lee, Kyeong Eun;Lee, Kyu-Bok;Jeong, Seung-Mi;Lee, Seok-Jae;Lee, Cheong-Hee;An, Seo-Young;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.358-363
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the reliability of computer-aided replica technique (CART) by calculating its agreement with the replica technique (RT), using statistical agreement analysis. MATERIALS AND METHODS. A prepared metal die and a metal crown were fabricated. The gap between the restoration and abutment was replicated using silicone indicator paste (n = 25). Gap measurements differed in the control (RT) and experimental (CART) groups. In the RT group, the silicone replica was manually sectioned, and the marginal and occlusal gaps were measured using a microscope. In the CART group, the gap was digitized using optical scanning and image superimposition, and the gaps were measured using a software program. The agreement between the measurement techniques was evaluated by using the 95% Bland-Altman limits of agreement and concordance correlation coefficients (CCC). The least acceptable CCC was 0.90. RESULTS. The RT and CART groups showed linear association, with a strong positive correlation in gap measurements, but without significant differences. The 95% limits of agreement between the paired gap measurements were 3.84% and 7.08% of the mean. The lower 95% confidence limits of CCC were 0.9676 and 0.9188 for the marginal and occlusal gap measurements, respectively, and the values were greater than the allowed limit. CONCLUSION. The CART is a reliable digital approach for evaluating the fit accuracy of fixed dental prostheses.

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF

Digital Image Analysis (DIA) for Estimating the Degree of Saturation of The Soil-Water Characteristic Curves (SWCC) (SWCC의 포화도를 구하기 위한 DIA 적용)

  • Min, Tuk-Ki;Huy, Phan Thieu
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • The aim of this study was to validate the suitability of an digital image analysis (DIA) method to measure the degree of saturation in the unsaturated conditions. This study was carried out on the Joo-Mun-Jin standard sand. A one-dimensional sand column test was used in the constant water level condition to get the correlation equation between the color number ($C_n$) and the measured degree of saturation (5). In addition, the hanging wale. column technique to determine the soil-water charactenstic curve (SWCC) was performed in a Buchner funnel. The average degree of saturation ($S_{ave}$) in the SWCC could be obtained by substituting average color number at each suction head value with the $C_n\;-\;S$ correlation equation. Comparisons were made between the measured results by the hanging water column test and those obtained from DIA method. Results showed that the DIA method tested here provided fairly good saturation distribution values in the drying and wetting processes.

OEM Fusion Technique for Multi-Image stereo (다중 스테레오를 위한 DEM 융합기법)

  • Kim, Min-Suk;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3047-3049
    • /
    • 2000
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. To develop an effective and practical terrain modeling system. We propose the methods which detect unreliable elevations in digital elevation maps (DEMs). and fuse several DEMs from multiple sources into an accurate and reliable result. This paper focuses on two key factors for generating robust 3D terrain models. the ability to detect unreliable elevation estimates. and to fuse the reliable elevations into a single optimal terrain model. We apply the correlation score methodology to reconstruct accurate DEM for multi-image and show the method is more effective than the conventional averaging method. The photo-realistic simulator is used for generating four simulated images from ground truth DEM and orthoimage.

  • PDF

Simultaneous Temperature and Velocity Fields Measurements near the Boiling Point

  • Doh, Deog-Hee;Hwang, Tae-Gyu;Koo, Bon-Young;Kim, Seok-Ro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.531-542
    • /
    • 2007
  • Simultaneous measurement technique for temperature and velocity fields near a heated solid body has been constructed. The measurement system consists of a 3-late CCD color camera, a color image grabber, a 1ighting system, a host computer and a software for the whole quantification process. Thermo Chromic Liquid Crystals (TCLC) was used as temperature sensors. A neural network was used to get a calibration curve between the temperature and the color change of the TCLC in order to enhance the dynamic range of temperature measurement. The velocity field measurement was attained by the use of the fray-level images taken for the flow field, and by introducing the cross-correlation technique. The temperature and the velocity fields of the forced and the natural convective flows neat the surface of a cartridge heater were measured simultaneously with the constructed measurement system.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.