• Title/Summary/Keyword: Digital circuits

Search Result 600, Processing Time 0.022 seconds

A Design of Low-power/Small-area Divider and Square-Root Circuits based on Logarithm Number System (로그수체계 기반의 저전력/저면적 제산기 및 제곱근기 회로 설계)

  • Kim, Chay-Hyeun;Kim, Jong-Hwan;Lee, Yong-Hwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.895-898
    • /
    • 2005
  • This paper describes a design of LNS-based divider and square-root circuits which are key arithmetic units in graphic processor and digital signal processor. To achive area-efficient and low-power that is an essential consideration for mobile environment, a fixed-point format of 16.16 is adopted instead of conventional floating-point format. The designed divider and square-root units consist of binary-to-logarithm converter, subtractor, logarithm-to-binary converter. The binary to logarithm converter is designed using combinational logic based on six regions approximation method. As a result, gate count reduction is obtained when compared with conventional lookup approack. The designed units is 3,130 gate count and 1,280 gate count. To minimize average percent error 3.8% and 4.2%. error compensation method is employed.

  • PDF

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

Improved 20Mb/s CMOS Optical Receiver for Digital Audio Interfaces (디지털 오디오 인터페이스용 개선된 20Mb/s CMOS 광수신기)

  • Yoo, Jae-Tack;Kim, Gil-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.6-11
    • /
    • 2007
  • This paper proposes CMOS optical receivers to reduce effective area and pulse width distortion (PWD) in high definition digital audio interfaces. To mitigate effective area and PWD, proposed receivers include a frans-impedance amplifier (TIA) with dual output and a level shifter with threshold convergence, respectively. Proposed circuits are fabricated using $0.25{\mu}m$ CMOS process and measured result demonstrated the effective area of $270\times120{\mu}m^2$ and PWD of ${\pm}3%$ for the receiver with a dual output TIA, and the effective area of $410\times140{\mu}m^2$ and PWD of ${\pm}2%$ for the receiver with a threshold convergence level shifter.

A New Design of High-Speed 1-Bit Full Adder Cell Using 0.18${\mu}m$ CMOS Process (0.18${\mu}m$ CMOS 공정을 이용한 새로운 고속 1-비트 전가산기 회로설계)

  • Kim, Young-Woon;Seo, Hea-Jun;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • With the recent development of portable system such as mobile communication and multimedia. Full adders are important components in applications such as digital signal processors and microprocessors. Thus It is important to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional Ratioed logic and Pass Transistor logic. The proposed adder has the advantages over the conventional CMOS, TGA, 14T logic. The delay time is improved by 13% comparing to the average value and PDP(Power Delay Product) is improved by 9% comparing to the average value. Layouts have been carried out using a 0.18um CMOS design rule for evaluation purposes. The physical design has been evaluated using HSPICE.

  • PDF

All Digital DLL with Three Phase Tuning Stages (3단 구성의 디지털 DLL 회로)

  • Park, Chul-Woo;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.21-29
    • /
    • 2002
  • This paper describes a high resolution DLL(Delay Locked Loop) using all digital circuits. The proposed architecture is based on the three stage of coarse, fine and ultra fine phase tuning block which has a phase detector, selection block and delay line respectively. The first stage, the ultra fine phase tuning block, is tune to accomplish high resolution using a vernier delay line. The second and third stage, the coarse and fine tuning block, are tuning the phase margin of Unit Delay using the delay line and are similar to each other. It was simulated in 0.35um CMOS technology under 3.3V supply using HSPICE simulator. The simulation result shows the phase resolution can be down to lops with the operating range of 250MHz to 800MHz.

  • PDF

Design of the Digital Neuron Processor and Development of the Algorithm for the Real Time Object Recognition in the Making Automatic System (생산자동화 시스템에서 실시간 물체인식을 위한 디지털 뉴런프로세서의 설계 및 알고리즘 개발)

  • Hong, Bong-Wha;Lee, Seung-Joo
    • The Journal of Information Technology
    • /
    • v.6 no.4
    • /
    • pp.11-23
    • /
    • 2003
  • We proposes that Design of the Digital Neuron Processor and Development of the Algorithm for the real time object recognition in the making Automatic system which uses the residue number system making the high speed operation possible without carry propagation, in this paper. Consisting of MAC(Multiplication and Accumulation) operator unit using Residue number system and sigmoid function operator unit using Mixed Residue Conversion is designed. The Designed circuits are descripted by C language and VHDL and synthesized by Compass tools. Finally, the designed processor is fabricated in 0.8${\mu}m$ CMOS process. Result of simulations shows that critical path delay time is about 19nsec and operation speed is 0.6nsec and the size can be reduced to 1/2 times co pared to the neural networks implemented by the real number operation unit. The proposed design the digital neuron processor can be implemented of the object recognition in the making Automatic system with desired real time processing.

  • PDF

A Threshold-voltage Sensing Circuit using Single-ended SAR ADC for AMOLED Pixel (단일 입력 SAR ADC를 이용한 AMOLED 픽셀 문턱 전압 감지 회로)

  • Son, Jisu;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.719-726
    • /
    • 2020
  • A threshold-voltage sensing circuit is proposed to compensate for pixel aging in active matrix organic light-emitting diodes. The proposed threshold-voltage sensing circuit consists of sample-hold (S/H) circuits and a single-ended successive approximation register (SAR) analog-to-digital converter (ADC) with a resolution of 10 bits. To remove a scale down converter of each S/H circuit and a voltage gain amplifier with a signl-to-differentail converter, the middle reference voltage calibration and input range calibration for the single-ended SAR ADC are performed in the capacitor digital-to-analog converter and reference driver. The proposed threshold-voltage sensing circuit is designed by using a 180-nm CMOS process with a supply voltage of 1.8 V. The ENOB and power consimption of the single-ended SAR ADC are 9.425 bit and 2.83 mW, respectively.

Development of a Portable Digital Electrocardiograph(ECG) measurable with Gel-less Metal Electrodes (젤리스 금속 전극으로 측정가능한 휴대용 디지털 심전도계의 개발)

  • Nam, Young-Jin;Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1903-1907
    • /
    • 2013
  • Heart condition should be observed for long periods of time because it does not appear abnormal all the time. However, there are many difficulties checking our health for a long time due to its size, operation of equipment, and cost. To solve these problems, an electrocardiograms(ECG), specially interfacing three gel-less metal electrodes for low cost portable applications, is designed and implemented. Gel-less metal electrodes are used for ECG monitoring system instead of gel-type electrodes that can cause skin rashes and itching problem. The whole ECG system consists of two parts-analog and digital circuits. The analog measurement circuit that has a 18*25mm size is made up of op-amps maintaining a sufficiently high common-mode noise rejection and passive elements of SMD type. Analog heart signal is converted to digital stream suitable for display on a TFT-LCD by an 8-bit microcontroller. The size of the completed ECG system is 25*80*50mm and its weighing is about 150g, which is small enough to be easily used. Therefore, the implemented ECG system can be used as a portable one.

A CMOS active pixel sensor with embedded electronic shutter and A/D converter (전자식 셔터와 A/D 변환기가 내장된 CMOS 능동 픽셀 센서)

  • Yoon, Hyung-June;Park, Jae-Hyoun;Seo, Sang-Ho;Lee, Sung-Ho;Do, Mi-Young;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.272-277
    • /
    • 2005
  • A CMOS active pixel sensor has been designed and fabricated using standard 2-poly and 4-metal $0.35{\mu}m$ CMOS processing technology. The CMOS active pixel sensor has been made up of a unit pixel having a highly sensitive PMOSFET photo-detector and electronic shutters that can control the light exposure time to the PMOSFET photo-detector, correlated-double sampling (CDS) circuits, and an 8-bit two-step flash analog to digital converter (ADC) for digital output. This sensor can obtain a stable photo signal in a wide range of light intensity. It can be realized with a special function of an electronic shutter which controls the light exposure-time in the pixel. Moreover, this sensor had obtained the digital output using an embedded ADC for the system integration. The designed and fabricated image sensor has been implemented as a $128{\times}128$ pixel array. The area of the unit pixel is $7.60{\mu}m{\times}7.85{\mu}m$ and its fill factor is about 35 %.

A Capacitance Deviation-to-Time Interval Converter Based on Ramp-Integration and Its Application to a Digital Humidity Controller (램프-적분을 이용한 용량치-시간차 변환기 및 디지털 습도 조절기에의 응용)

  • Park, Ji-Mann;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.70-78
    • /
    • 2000
  • A novel capacitance deviation-to-time interval converter based on ramp-integration is presented. It consists of two current mirrors, two schmitt triggers, and control digital circuits by the upper and lower sides, symmetrically. Total circuit has been with discrete components. The results show that the proposed converter has a linearity error of less than 1% at the time interval(pulse width) over a capacitance deviation from 295 pF to 375 pF. A capacitance deviation of 40pF and time interval of 0.2 ms was measured for sensor capacitance of 335 pF. Therefore, the high-resolution can be known by counting the fast and stable clock pulses gated into a counter for time interval. The application of a novel capacitance deviation-to time interval converter to a digital humidity controller is also presented. The presented circuit is insensitive to the capacitance difference in disregard of voltage source or temperature deviation. Besides the accuracy, it features the small MOS device count integrable onto a small chip area. The circuit is thus particularly suitable for the on-chip interface.

  • PDF