• Title/Summary/Keyword: Digital Satellite Transponder

Search Result 21, Processing Time 0.02 seconds

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.

Digital Transponder Technology for the Exploration of Space (우주 탐사를 위한 디지털 트랜스폰더 기술)

  • Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee;Lee, Sang-Ryool
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.80-89
    • /
    • 2010
  • Transponder is the significant equipment for the telemetry and telecommand operation between the ground station and the satellite. Recently, various transponder technology like Compact Standard Transponder(CST), Small User Transponder(SUT) for data relay satellite, Dual Mode TT&C Transponder(DMT) for large user, and Deep Space Transponder(DST) for deep space mission have been developed according to the communication method and user requirements. Especially, the transponder based on the digital technology comes into the spotlight in the satellite communication field. This paper describes the various analog transponder technology and the state-of-art digital transponder technology grafted onto the existing analog transponder technology.

The system performance analysis and implementation of Digital Communication Satellite (디지털위성중계기 시스템 성능 분석 및 구현)

  • Kim, Ki-Jung;Seo, Hak Geum
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.439-446
    • /
    • 2014
  • This study introduces about the analysis, verification and implementation of Digital Communication Satellite transponder. Through the pre-performance analysis of each component by the circuit level simulation, each component's performance was checked whether satisfying the specifications. When each of the components was connected in order, System's performances were evaluated through system harmonic balanced simulation whether satisfying the specifications. Through pre-analysis of the system performance, specification of each component was defined. On the basis of that specification, Components which comprise the Digital Communication Satellite repeater were manufactured, and finally, the overall system performance check was made by integrating the components of Digital Communication Satellite transponder.

A Study of Mid-sized Communication Satellite in Korea (국내 중형 통신위성의 발전 방안)

  • Woo, Hyung Je;Lee, Daeil;Han, Sang Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2016
  • A technology of GEO satellite communications starts from Koreasat program in Korea. Payload equipment of EQM Ku and Ka band transponders had been developed and space-qualified Ka band payload in COMS was successfully launched in June, 2010. For the purpose of military communications, Dehop-Rehop transponder was developed in Koreasat5 as ANASIS system and DAT(Digital Active Transponder) and DCAMP(Digital Channel AMPlifier) transponders are now under development. In this paper, from the study of military satellite communications trend, a direction of military communication satellite is suggested based on the current GEO SATCOM technologies in Korea. Considering the limit of frequency resources, a technology of battlefield adaptive transponder with medium capacity against high moveable jamming tactics would be efficient for the future military SATCOM system. Mid-sized military satellites with frequency hopping and mid-capacity transponders can be a solution of vitalizing the GEO satellite programs.

Design and Implementation of Carrier Recovery Loop for Satellite Telemetry and Tracking & Command (위성 관제용 반송파 복원부 설계 및 구현)

  • Lee, Jung-Su;Oh, Chi-Wook;Seo, Gyu-Jae;Oh, Seung-Han;Chae, Jang-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • A Satellite transponder is mounted on the Satellite and performs radio communications with the ground station. A Digital transponder compared to The analog transponder is made easy and accurate performance prediction. Also Modulation Scheme, Data Rate, Loop Bandwidth, Modulation Index and etc. can be changed on orbit, by implementing FPGA can reduce the weight and volume. The core technology of digital transponder is Carrier Recovery loop. Dynamic Range, Frequency Tracking Range, Frequency Tracking Rate and Coherent performance are determined by the performance of the Carrier Recovery loop. In this paper, we proposed the structure of Carrier Recovery loop for the Satellite digital transponder, then tested and verified the structure.

System Level Space Environment Testing of Satellite Digital Transponder (디지털 위성중계기에 대한 시스템 단위의 우주환경 검증 시험)

  • Song, Young-Joong;Kim, Jung-Ho;Lee, Sue-Hyun;Seo, Hak-Geum;Shin, Guan-Ho;Jin, Bong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1159-1169
    • /
    • 2013
  • EQM Model Digital transponder applying the Korean's own designing and manufacturing technology has gone through a series of trials and errors during the development. In particular, lack of thermal designs expedience for the vacuum causes variety of errors in designing, assembling transponder and setting up the test at the first thermal vacuum test (TVAC). Since the first TVAC test could not accomplished its aims successfully, so the second TVAC should be performed as make up test with revised Digital transponder. In this paper, the defects that identified in the first TVAC are analyzed and applied solutions and its results at the second TVAC are presented. Using the lessons from the first and second TVAC, we will be able to make more reliable digital transponders in the next phase of project. In addition it also be useful as a reference when we design another satellite payloads.

Design and Implementation of Interference-Immune Architecture for Digital Transponder of Military Satellite (군통신위성 디지털 중계기의 간섭 회피 처리 구조 설계 및 구현)

  • Sirl, Young-Wook;Yoo, Jae-Sun;Jeong, Gun-Jin;Lee, Dae-Il;Lim, Cheol-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.594-600
    • /
    • 2014
  • In modern warfare, securing communication channel by combatting opponents' electromagnetic attack is a crucial factor to win the war. Military satellite digital transponder is a communication payload of the next generation military satellite that maintains warfare networks operational in the presence of interfering signals by securely relaying signals between ground terminals. The transponder in this paper is classified as a partial processing transponder which performs cost effective secure relaying in satellite communication links. The control functions of transmission security achieve immunity to hostile interferences which may cause malicious effects on the link. In this paper, we present an efficient architecture for implementing the control mechanism. Two major ideas of pipelined processing in per-group control and software processing of blocked band information dramatically reduce the complexity of the hardware. A control code sequence showing its randomness with uniform distribution is exemplified and qualification test results are briefly presented.

Performances Evaluation of Ka Band Communications Transponder for COMS (통신해양기상위성 Ka 대역 통신탑재체 성능검증)

  • Lee, Yong-Min;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • COMS is the one of Korean hybrid geostationary satellite and is scheduled to be launched in 2009 by Arian V into $128^{\circ}$ E longitude. COMS is designed and manufactured for three main objectives which are Communications, Oceanographic, and Meteorological missions. It provides the weather monitoring, ocean monitoring, and Ka band satellite communication services by means of three different payloads. The Ka band communications payload was developed by Electronics and Telecommunications Research Institute (ETRI), and provides not only the digital transmission for the communication services against natural disaster but also digital transmission for the high speed multimedia services. This paper describes the overview of the electrical and mechanical design and measured performances of the Ka band communications transponder flight model (FM) for COMS.

  • PDF

A Gigabit Serial Transceiver Design Using FPGA for Satellite Communication Transponder (위성통신 중계기에서의 FPGA를 이용한 Gigabit 시리얼 송수신기 설계)

  • Hong, Keun-Pyo;Lee, Jung-Sub;Jin, Byoung-Il;Ko, Hyun-Suk;Seo, Hak-Geum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.481-487
    • /
    • 2014
  • In this paper, we have proposed gigabit serial transceiver based on backplane architecture at the satellite communication digital transponder. The transponder supports the full combinational switching function with broadband multi-channel using programmable device - Xilinx space-grade Virtex-5 FPGA. In order to implement the switching function, GTX transceiver solution inside Virtex-5 FPGA is used. Also hardware implementation is simple because of no additional component. In order to use a GTX transceiver, signal integrity(SI) simulation of PCB design is essential. We investigate the characteristics of the S-parameter, eye diagram, channel jitter of GTX transmission line and conform that GTX Transceiver operates without error. Finally the proposed PCB design will be utilized at satellite communication digital transponder EQM-2(Engineering Qualification Model-2).

A Study on Advanced Satellite Uplink Rain Attenuation Compensation using Digital Transponder of Next Military Satellite (차기 군위성체계의 디지털 위성중계기를 이용한 상향링크 강우감쇠에 대한 향상된 보상방안 연구)

  • Kim, Jung-Ho;Lee, Sue-Hyun;Kim, Bong-Su;Lee, Chang-Young;Song, Young-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1696-1703
    • /
    • 2010
  • Increased demand for military satellite communications system and due to the depletion of resources of existing satellite communications frequencies, Ka-band and EHF-band satellite communication systems is growing demand for development. As a result, the study of rain attenuation mitigation for Ka/EHF-band frequencies has been achieved. The method to compensate rain attenuation on Ka-band(20/30) using the signal power measurement function in Digital Transponder of Next Military Satellite has been proposed in this paper. This method is more effective than generally used method by Beacon and UPC(uplink power control) in giving the precise rain attenuation measurement and correction.