• Title/Summary/Keyword: Digital Maps

Search Result 724, Processing Time 0.025 seconds

Establishment of Crowd Management Safety Measures Based on Crowd Density Risk Simulation (군중 밀집 위험도 시뮬레이션 기반의 인파 관리 안전대책 수립)

  • Hyuncheol Kim;Hyungjun Im;Seunghyun Lee;Youngbeom Ju;Soonjo Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2023
  • Generally, human stampedes and crowd collapses occur when people press against each other, causing falls that may result in death or injury. Particularly, crowd accidents have become increasingly common since the 1990s, with an average of 380 deaths annually. For instance, in Korea, a stampede occurred during the Itaewon Halloween festival on October 29, 2022, when several people crowded onto a narrow, downhill road, which was 45 meters long and between 3.2 and 4 meters wide. Precisely, this stampede was primarily due to the excessive number of people relative to the road size. Essentially, stampedes can occur anywhere and at any time, not just at events, but also in other places where large crowds gather. More specifically, the likelihood of accidents increases when the crowd density exceeds a turbulence threshold of 5-6 /m2. Meanwhile, festivals and events, which have become more frequent and are promoted through social media, garner people from near and far to a specific location. Besides, as cities grow, the number of people gathering in one place increases. While stampedes are rare, their impact is significant, and the uncertainty associated with them is high. Currently, there is no scientific system to analyze the risk of stampedes due to crowd concentration. Consequently, to prevent such accidents, it is essential to prepare for crowd disasters that reflect social changes and regional characteristics. Hence, this study proposes using digital topographic maps and crowd-density risk simulations to develop a 3D model of the region. Specifically, the crowd density simulation allows for an analysis of the density of people walking along specific paths, which enables the prediction of danger areas and the risk of crowding. By using the simulation method in this study, it is anticipated that safety measures can be rationally established for specific situations, such as local festivals, and preparations may be made for crowd accidents in downtown areas.

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.

USLE/RUSLE Factors for National Scale Soil Loss Estimation Based on the Digital Detailed Soil Map (수치 정밀토양에 기초한 전국 토양유실량의 평가를 위한 USLE/RUSLE 인자의 산정)

  • Jung, Kang-Ho;Kim, Won-Tae;Hur, Seung-Oh;Ha, Sang-Keon;Jung, Pil-Kyun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Factors of universal soil loss equation, USLE, and its revised version, RUSLE for Korean soils were reevaluated to estimate the national scale of soil loss based on digital soil maps. Rainfall erosivity factor, R, of 158 locations of cities and counties were spacially interpolated by the inverse distance weight method. Soil erodibility factor, K, of 1321 soil phases of 390 soil series were calculated using the data of soil survey and agri-environmental quality monitoring. Topographic factor, LS, was estimated using soil map of 1:25,000 scale with soil phase and land use type. Cover management factor, C, of major crops and support practice factor, P, were summarized by analyzing the data of lysimeter and field experiments for 27 years (1975-2001) in the National Institute of Agricultural Science and Technology. R factor varied between 2322 and 6408 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$ and the average value was 4276 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$. The average K value was evaluated as 0.027 MT hr $MJ^{-1}$ $mm^{-1}$. The highest K factor was found in paddy rice fields, 0.034 MT hr $MJ^{-1}$ $mm^{-1}$, and K factors in upland fields, grassland, and forest were 0.026, 0.019, and 0.020 MT hr $MJ^{-1}$ $mm^{-1}$, respectively. C factors of upland crops ranged from 0.06 to 0.45 and that of grassland was 0.003. P factor varied between 0.01 and 0.85.

Topographic Factors Computation in Island: A Comparison of Different Open Source GIS Programs (오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로)

  • Lee, Bora;Lee, Ho-Sang;Lee, Gwang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.903-916
    • /
    • 2021
  • An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flowsthat move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunitiesfor flexible algorithms customized forspecific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

A Study of the shade of between maxillary and mandibular anterior teeth in the Korean (한국인의 상하악 전치부 색조에 관한 연구)

  • Kim, Tae-Jin; Kwon, Kung-Rock;Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.343-350
    • /
    • 2008
  • Purpose: The purpose of this study was to spectrophotometrically evaluate the shade difference between of maxillary and mandibular anterior teeth in the Korean by the standard of vita classical shade guide using $SpectroShade^{TM}$. Material and methods: In this study, the shades of healthy anterior teeth were examined and analyzed using the digital shade analysis of $SpectroShade^{TM}$. This study examined 80 individuals in their twenties, thirties, fourties, fifities ages and 40 males and 40 females, presenting 12 healthy, unrestored maxillary and mandibular anterior teeth. Tooth brushing and oral prophylaxis were performed prior to evaluation. The $SpectroShade^{TM}$ was used to acquire images of the 12 maxillary and mandibular anterior teeth. These images were analyzed using $SpectroShade^{TM}$ Software, and shade maps of each tooth were acquired. The shade difference of upper and lower, and gender differences and ages difference were investigated and analyzed with CIE $L^{*}a^{*}b^{*}$ color order system. One-Way ANOVA test was used to find out if there were significant differences between groups tested and Sheffe multiple comparison was used to identify where the differences were. Results: 1. Shade differences were significant (P < .05) between maxillary and mandibular central incisor, lateral incisor, canine. 2. No significant differences in shade distribution were seen between lateral incisors and central incisors. 3. Canine's shade difference were more significant than central incisor's and lateral incisors's. 4. No significant differences in shade distribution were seen between genders in maxillary and mandibulr central incisor, lateral incisor, canine. 5. No significant differences in shade distribution were seen in order of years in maxillary and mandibulr central incisor, lateral incisor, canine. Conclusions: The results of this study show that 1. Shade difference was founded in maxillary and mandibular anterior teeth and ${\Delta}E^{*}$ value was more than 2.0. 2. Canine's shade difference were more significant than central incisor's and lateral incisors's and between central incisors and lateral incisors shade differences were no significant. 3. No significant differences in shade distribution were seen between genders in maxillary and mandibular anterior teeth. 4. No significant differences in shade distribution were seen in order of years grade in maxillary and mandibular anterior teeth.

A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment - (세분류 토지피복지도 분류체계 개선방안 연구 - 환경부 토지피복지도를 중심으로 -)

  • Oh, Kwan-Young;Lee, Moung-Jin;No, Woo-Young
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2016
  • The purpose of this study is to improve the classification system of sub-divided land cover map among the land cover maps provided by the Ministry of Environment. To accomplish the purpose, first, the overseas country land cover map classification items were examined in priority. Second, the area ratio of each item established by applying the previous sub-divided classification system was analyzed. Third, the survey on the improvement of classification system targeting the users (experts and general public) who actually used the sub-divided land cover map was carried out. Fourth, a new classification system which improved the previous system by reclassifying 41 classification items into 33 items was finally established. Fifth, the established land cover classification items were applied on study area, and the land cover classification result according to the improvement method was compared with the previous classification system. Ilsan area in Goyang city where there are diverse geographic features with various land surface characteristics such as the urbanization area and agricultural land were distributed evenly were selected as the study area. The basic images used in this study were 0.25 m aerial ortho-photographs captured by the National Geographic Information Institute (NGII), and digital topographic map, detailed stock map plan, land registration map and administrative area map were used as the relevant reference data. As a result of applying the improved classification system into the study area, the area of culture-sports, leisure facilities was $1.84km^2$ which was approximately more than twice larger in comparison to the previous classification system. Other areas such as transportation and communication system and educational administration facilities were not classified. The result of this study has meaningful significance that it reflects the efficiency for the establishment and renewal of sub-divided land cover map in the future and actual users' needs.

Preliminary Result of Lineament Analysis for the Potential Site Selection of HLW Geological Disposal (HLW 지층처분 광역 후보부지 선정을 위한 선형구조 예비 분석 결과)

  • Ko, Kyoungtae;Kihm, You Hong;Lee, Hong-Jin
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.167-176
    • /
    • 2018
  • It is necessary to consider various geological parameters such as lithology, geological structure, earthquake, hydraulic geology, geochemistry, geological engineering, and geothermal in order to select potential sites for HLW(high-level radioactive waste) geological disposal. In particular, the geological lineament reflects the characteristics of various geological parameters and can be used as an important criterion for site selecting such as nuclear power plants and HLW repositories. In this paper, the Finnish lineament classification method for HLW disposal site selection through the lineament analysis was applied to the lineament data in the Korean peninsula. For this purpose, we used previous lineament data from the KIGAM(Korea Institute of Geoscience and Mineral Resources) and obtained new lineament data from the field geologists such as structural geologist, paleoseismologist, and geomorphologist. To ensure the reliability of the new lineament analysis data, we used high-resolution satellite images and hill-shade relief maps which were constructed by a digital elevation model. In the prevailing direction analysis from the acquired lineament data, the NNE-SSW direction was the most dominant, but the ENE-WSW and NNW-SSE directions also showed highly frequency depending on the experts. Applying the Finnish classification method, the geometrical development characteristics of the lineament corresponding to the Class 1 and 2 used for the wide-wide candidate site were compared. As a result of direction analysis for Class 1, the NNE-SSW direction was the most dominant and the WNW-ESE direction also showed a high frequency. In the case of Class 2, the NNE-SSW is the most prevalent and WNW-ESE or ENE-WSW direction also had highly frequency depending on the experts. Different lineament analysis results based on the same data are interpreted as a result of subjective experience and analytical criteria from the every experts. Therefore, it is necessary to establish integrated criteria and consider geophysical data for the publication of reliable nation-wide lineament map.

Areal Distribution Ratio of Rock ffes with Geologic Ages in the Gyeonggi-Seoul-Incheon Areas (경기-서울-인천지역 구성암류의 지질시대별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.208-216
    • /
    • 2007
  • Based on digital geologic and geomorphic maps of 1 : 250,000 scale, distributive ratios of rock types were obtained by ArcGIS 9.0 program in the Gyeonggi, Seoul and Incheon areas of the Gyeonggi province. In the Gyeonggi area, 37 rock types are developed, and their geologic ages can be classified into Precambrian, Age-unknown, Triassic, Jurassic, Cretaceous and Quatemary. Among them, distributive ratios are decreasing in the order of Jurassic Daebo granites, Precambrian banded gneiss of Gyeonggi gneiss complex and Quatemary alluvium, all of which comprise about 83.7% of the rock types in the area. In the Seoul and Incheon areas, 10 and 15 rock types are developed, respectively., with the firmer being classified into Precambrian, Jurassic and Quatemary, and the latter into Precambrian, Jurassic, Cretaceous and Quatemary. In the Seoul area, distributive ratios are decreasing in the order of banded gneiss of Gyeonggi gneiss complex, Daebo granites and alluvium, which consist of 95.5% of the rocks in the area. In the Incheon area, distributive ratios are decreasing in the order of alluvium, Daebo granites, banded gneiss of Gyeonggi gneiss complex, reclaimed land, and schists of Gyeonggi gneiss complex, which occupy about 96.2% of the rocks in the area. The ratio of alluvium in the Incheon area is greater than that of Gyeonggi and Seoul areas, and the ratio of reclaimed land in the Incheon area is greater that of the Seoul, which can be attributed to the recent reclamation of the land for the industrial results such as new town development along the coastline of the Gyeonggi Bay.

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (II) : The Proposal of 'Sanjulgi-Jido(Mountain Ridge Map)‘ (한국 산맥론(II): 한반도 '산줄기 지도'의 제안)

  • Park Soo Jin;SON ILL
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.253-273
    • /
    • 2005
  • In recent years, there are strong social demands to characterize the spatial distribution of mountains in Korea. This study aims to develop a 'Sanjulgi-Jido(mountain ridge map)' that might be used not only to satisfy these social demands but also to effectively present the spatial distribution of mountains and drainage basins in the Korean Peninsular. The 'Sanjulgi-Jido' developed in this study is a map that presents the continuity of mountains based on the drainage divides that are delineated by a pre-defined drainage basin size and elevation. This study first validated the Bakdudaegan system through the analyses of a digital elevation model. The Bakdudaegan system has long been recognized as the Koreans traditional conceptual framework to characterize the spatial distribution of mountains. The analyses showed that the Bakdudaegan system has several problems to represent the mountain systems in Korea, which includes 1) the lack of the representativeness of drainage basins, 2) inaccuracy to depict the boundary of drainage basins, 3) the lack of representativeness of mountains, and 4) geo-polical issue that confines the spatial extent of mountain systems within the Korean Peninsular. In order to represent the mountains system in a more quantitative manner, we applied several terrain analysis techniques to understand the spatial distribution of mountains and drainage basins. Based on these analyses, we developed an hierarchical system to classify the continuity (If mountains, which are presented as the spatial distribution of drainage divides with a certain elevation. The first-order Sanjulgi is the drainage divides whose drainage basin are bigger than $5,000km^2$ and the point elevation is above 100m. The next order Sanjulgi is delineated as the size of drainage basin is successively divided by two. This kind of design is able to provide a logical framework to present the mountain systems at different details, depending on the purpose and scale of maps. We also provide several empirical functions to calculate various geomorphological indices for each order of Sanjulgi. The 'Sanjulgi Jido' is similar with the Bakdudaegan system, since it characterizes the continuity of mountains based on the spatial distribution of the drainage divide. It, however, has more scientific criteria to define the scale and continuity of mountains. It should be also noted that the 'Sanjulgi Jido' proposed has different logical and methodological background, compared with the mountain range map that explains the genesis of mountain systems in addition to the continuity of mountains.

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.