• Title/Summary/Keyword: Digital Logic Circuits

Search Result 138, Processing Time 0.023 seconds

A Design of Low-power/Small-area Divider and Square-Root Circuits based on Logarithm Number System (로그수체계 기반의 저전력/저면적 제산기 및 제곱근기 회로 설계)

  • Kim, Chay-Hyeun;Kim, Jong-Hwan;Lee, Yong-Hwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.895-898
    • /
    • 2005
  • This paper describes a design of LNS-based divider and square-root circuits which are key arithmetic units in graphic processor and digital signal processor. To achive area-efficient and low-power that is an essential consideration for mobile environment, a fixed-point format of 16.16 is adopted instead of conventional floating-point format. The designed divider and square-root units consist of binary-to-logarithm converter, subtractor, logarithm-to-binary converter. The binary to logarithm converter is designed using combinational logic based on six regions approximation method. As a result, gate count reduction is obtained when compared with conventional lookup approack. The designed units is 3,130 gate count and 1,280 gate count. To minimize average percent error 3.8% and 4.2%. error compensation method is employed.

  • PDF

Design of digital clock level translator with 50% duty ratio from small sinusoidal input (작은 정현파입력의 50% Duty Ratio 디지털 클럭레벨 변환기 설계)

  • Park, Mun-Yang;Lee, Jong-Ryul;Kim, Ook;Song, Won-Chul;Kim, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2064-2071
    • /
    • 1998
  • A new digital clock level translator has been designed in order to produce a clock source of the internal logic circuits. The translator output has 50% duty ratio from small sinusoidal input such as TCXO which oscillates itself in poratable components. The circuit consists of positive and negative comparators, RS latch, charge pump, and reference vol- tage generator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator reference, producing output waveform with valid 50% duty ratio of the digital signal level. The designed level translator can be used as a sampling clock source of ADC, PLL and the colck source of the clock synthesizer. The circuit wasdesigned in a 0.8.mu.m analog CMOS technology with double metal, double poly, and BSIM3 circuit simulation model. From our experimental results, a stable operating characteristics of 50 +3% duty ratio was obtained from the sinusoidal input wave of 370 mV.

  • PDF

Design of A 3V CMOS Programmable Gain Amplifier for the Information Signal Processing System (정보처리 시스템용 3V CMOS 프로그래머블 이득 증폭기 설계)

  • 송제호;김환용
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.753-758
    • /
    • 2002
  • In this paper, low voltage 3V CMOS programmable gain amplifier(PGA) for using in the transmitter and receiver of ADSL analog front-end is designed. The designed receive PGA is connected with 1.1MHz continuous lowpass fillet and controls the gain from 0dB to 30dB. And also the transmitter PGA is connected with 138KHz lowpass filter and controls the gain from -15dB to 0dB. The gain of All PGAs can be programmed by digital logic circuits and main controller. The designed PGAs are verified using HSPICE simulation with $0.35\mu{m}$ CMOS parameter.

  • PDF

SOC Verification Based on WGL

  • Du, Zhen-Jun;Li, Min
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1607-1616
    • /
    • 2006
  • The growing market of multimedia and digital signal processing requires significant data-path portions of SoCs. However, the common models for verification are not suitable for SoCs. A novel model--WGL (Weighted Generalized List) is proposed, which is based on the general-list decomposition of polynomials, with three different weights and manipulation rules introduced to effect node sharing and the canonicity. Timing parameters and operations on them are also considered. Examples show the word-level WGL is the only model to linearly represent the common word-level functions and the bit-level WGL is especially suitable for arithmetic intensive circuits. The model is proved to be a uniform and efficient model for both bit-level and word-level functions. Then Based on the WGL model, a backward-construction logic-verification approach is presented, which reduces time and space complexity for multipliers to polynomial complexity(time complexity is less than $O(n^{3.6})$ and space complexity is less than $O(n^{1.5})$) without hierarchical partitioning. Finally, a construction methodology of word-level polynomials is also presented in order to implement complex high-level verification, which combines order computation and coefficient solving, and adopts an efficient backward approach. The construction complexity is much less than the existing ones, e.g. the construction time for multipliers grows at the power of less than 1.6 in the size of the input word without increasing the maximal space required. The WGL model and the verification methods based on WGL show their theoretical and applicable significance in SoC design.

  • PDF

Efficient Operator Design Using Variable Groups (변수그룹을 이용한 효율적인 연산기 설계)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, we propose a partial product addition method using variable groups in the design of operators such as multipliers and digital filters. By this method, full adders can be replaced with simple logic circuits. To show the efficiency of the proposed method, we applied the method to the design of squarers and precomputer blocks of FIR filters. In case of 7 bit and 8 bit squarers, it is shown that by the proposed method, area, power and delay time can be reduced up to {22.1%, 20.1%, 14%} and {24.7%, 24.4%, 6.7%}, respectively, compared with the conventional method. The proposed FIR precomputer circuit leads to up to {63.6%, 34.4%, 9.8%} reduction in area, power consumption and propagation delay compared with previous method.

Study on the method of safety diagnosis of electrical equipments using fuzzy algorithm (퍼지알고리즘을 이용한 전기전자기기의 안전진단방법에 대한 연구)

  • Lee, Jae-Cheol
    • Journal of Digital Convergence
    • /
    • v.16 no.7
    • /
    • pp.223-229
    • /
    • 2018
  • Recently, the necessity of safety diagnosis of electrical devices has been increasing as the fire caused by electric devices has increased rapidly. This study is concerned with the safety diagnosis of electric equipment using intelligent Fuzzy technology. It is used as a diagnostic input for the multiple electrical safety factors such as the use current, cumulative use time, deterioration and arc characteristics inherent to the equipment. In order to extract these information in real time, a device composed of various sensor circuits, DSP signal processing, and communication circuit is implemented. The fuzzy logic algorithm using the Gaussian function for each information is designed and compiled to be implemented on a small DSP board. The fuzzy logic receives the four diagnostic information, deduces it by the fuzzy engine, and outputs the overall safety status of the device as a 100-step analog fuzzy value familiar to human sensibility. By experiments of a device that combines hardware and fuzzy algorithm implemented in this study, it is verified that it can be implemented in a small DSP board with human-friendly fuzzy value, diagnosing real-time safety conditions during operation of electric equipment. In the future, we expect to be able to study more intelligent diagnostic systems based on artificial intelligent with AI dedicated Micom.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

Development of Circuit Emulator Solution using Raspberry Pi System (라즈베리파이 시스템을 이용한 회로 에뮬레이터 솔루션 개발)

  • Nah, Bang-hyun;Lee, Young-woon;Kim, Byung-gyu
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.607-612
    • /
    • 2017
  • The use of RaspberryPi in building an embedded system may be difficult for users in understanding the circuit and the hardware cost. This paper proposes a solution that can test the systems virtually. The solution consists of three elements; (i) editor, (ii) interpreter and (iii) simulator and provides nine full modules and also allows the users to configure/run/test their own circuits like real environment. The task of abstraction for modules through the actual circuit test was carried out on the basis of the data sheet and the specification provided by the manufacturer. If we can improve the level of quality of our solution, it can be useful in terms of cost reduction and easy learning. To achieve this end, the electrical physics engine, the level of interpreter that can be ported to the actual board, and a generalization of the simulation logic are required.

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).

Convenient and Economic Mechatronics Education Using Small Portable Electronic Devices (휴대용 소형 전자장비를 이용한 편리하고 경제적인 메카트로닉스 교육)

  • Kang, Chul-Goo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Although mechatronics education in a mechanical engineering curriculum is recently recognized as important, its experimental education has been done generally in the laboratory equipped with all the apparatus and could not be done at home by students. This paper introduces experimental educations on mechatronics, e.g., digital logic circuits, 7-segment LED drive, square wave generation, microcontroller programming using assembly and C languages, timer interrupt, and step motor drive using a small 5 V power supply, a breadboard, various electronic and electric components, a microcontroller and its programmer, a step motor, and a student's PC. In the developed mechatronics course, experimental educations are scheduled in parallel with content's lectures together, and cheap and economic experimental environment is prepared for students in which students can easily practice experimental works in advance or later at home by themselves.