• Title/Summary/Keyword: Digital Logic Circuits

Search Result 139, Processing Time 0.025 seconds

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

A New Design of High-Speed 1-Bit Full Adder Cell Using 0.18${\mu}m$ CMOS Process (0.18${\mu}m$ CMOS 공정을 이용한 새로운 고속 1-비트 전가산기 회로설계)

  • Kim, Young-Woon;Seo, Hea-Jun;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • With the recent development of portable system such as mobile communication and multimedia. Full adders are important components in applications such as digital signal processors and microprocessors. Thus It is important to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional Ratioed logic and Pass Transistor logic. The proposed adder has the advantages over the conventional CMOS, TGA, 14T logic. The delay time is improved by 13% comparing to the average value and PDP(Power Delay Product) is improved by 9% comparing to the average value. Layouts have been carried out using a 0.18um CMOS design rule for evaluation purposes. The physical design has been evaluated using HSPICE.

  • PDF

Semiconductor Characteristics and Design Methodology in Digital Front-End Design (Digital Front-End Design에서의 반도체 특성 연구 및 방법론의 고찰)

  • Jeong, Taik-Kyeong;Lee, Jang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1804-1809
    • /
    • 2006
  • The aim of this Paper is to describe the implementation of a low-power digital front-End Design (FED) that will act as the core of a stand-alone Power dissipation methodology. The design of digital integrated circuits is a large and diverse area, and we have chosen to focus on low power FED. Designs are made from synthesized logic, and we need to consider the low power digital FED including input clock, buffer, latches, voltage regulator, and capacitance-to-voltage counter which have been integrated onto hish bandwidth communication chips and system. These single- chip micro instruments, implemented in a 0.12um CMOS technology operate with a single 0.9V supply voltage, and can be used to monitor dynamic and static power dissipation, Vesture, acceleration junction temperature (Tj), etc.

A Study on the Synchronous Signal Detection and Error Correction in Radio Data System (RDS 수신 시스템에서 동기식 신호복원과 에러정정에 관한 연구)

  • 김기근;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.1-9
    • /
    • 1992
  • Radio data system is a next-generation broadcasting system of digital information communication which multiplexes the digital data into the FM stereo signal in VHF/FM band and provides important and convenient service features. And radio data are composed of groups which are divided into 4 blocks with information word and check word. In this paper, radio data receiver is developed which recovers and process radio data to provide services. Then we confirm that 7dB SNR is required to be 10S0-5TBER of demodulation. Deconding process of shortened-cyclic-decoder has been simulated by computer. Also, the time-compression (by 16 times) method has been adopted for the RDS features post-processing. Via the error probability calculation, simulation and experimentation, the developed receiver system is proved to satisfy the system specification of EBU and implemented by general logic gates and analog circuits.

  • PDF

Web-based Java Applets for Understanding the Concepts of Digital Sequential Circuits (디지털 순서회로에 대한 웹기반 개념학습형 자바 애플릿)

  • Kim, Dong-Sik;Seo, Ho-Joon;Seo, Sam-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2490-2492
    • /
    • 2001
  • According to the appearance of various virtual websites using multimedia technologies for engineering education, the internet applications in engineering education have drawn much interests. But unidirectional communication, simple text/image-based webpages and tedious learning process without motivation etc. have made the lowering of educational efficiency in cyberspace. Thus, to cope with these difficulties this paper presents a web-based educational Java applets for understanding the principles or conceptions of digital logic systems. The proposed Java applets provides the improved learning methods which can enhance the interests of learners. The results of this paper can be widely used to improve the efficiency of cyberlectures in the cyber university. Several sample Java applets are illustrated to show the validity of the proposed learning method.

  • PDF

Study on Implementation of Hardware Simulation System for Verification of Digital Circuit (디지털 회로 검증을 위한 하드웨어 시뮬레이션 시스템 구현에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.78-80
    • /
    • 2007
  • According to the development of VLSI integration technology and getting bigger the circuit size, it is a significant problem to verify systemized circuit. The faster and more accurate verification has very significant meaning in the field of electronic industry because it can yield the product comparably faster and reduce the trial and errors. In spite of the presence of various kind of Integrated Circuits it's not always easy to get the right part. Besides, it is hard to find a vendor for a small quantity consumers like who develop prototype applications. In this study, we've tried to get the logical signals from the PC based device we've developed that correspondents with the real ICs. It can emulate decoder ICs, multiplexers, demultiplexers and basic logic gates.

  • PDF

Design of Digital Correction Circuits Using Microprocessor (마이크로 프로세서를 이용한 디지털 보정회로 설계)

  • Jun, Ho-Ik;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2291-2293
    • /
    • 2011
  • In this paper, the composes with digital position with a computer logical operation order with the signal processing method which is pliability and result of the logical operation which confronts in input signal from the outside input-output Channel leads and about the drive which the possibility to output at the outside is a research. This Decoder IC Multiplexer & De-multiplexer, position the function with from the digital signal circle where the imagination embodiments and BIT outputs of IC etc. are possible is possible in basic and usefully from the general industrial, could be used.

New Model-based IP-Level Power Estimation Techniques for Digital Circuits (디지털 회로에서의 새로운 모델 기반 IP-Level 소모 전력 추정 기법)

  • Lee, Chang-Hee;Shin, Hyun-Chul;Kim, Kyung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.42-50
    • /
    • 2006
  • Owing to the development of semiconductor processing technology, high density complex circuits can be integrated in a System-on-Chip (SoC). However, increasing energy consumption becomes one of the most important limiting factors. Power estimation at the early stage of design is essential, since design changes at lower levels may significantly lengthen the design period and increase the cost. In this paper, logic level circuits ire levelized and several levels are selected to build power model tables for efficient power estimation. The proposed techniques are applied to a set of ISCAS'85 benchmark circuits to illustrate their effectiveness. Experimental results show that significant improvement in estimation accuracy and slight improvement in efficiency are achieved when compared to those of a well-known existing method. The average estimation error has been reduced from $9.49\%\;to\;3.84\%$.

Evaluation of Low Power and High Speed CMOS Current Comparators

  • Rahman, Labonnah Farzana;Reaz, Mamun Bin Ibne;Marufuzzaman, Mohammad;Mashur, Mujahidun Bin;Badal, Md. Torikul Islam
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.317-328
    • /
    • 2016
  • Over the past few decades, CMOS current comparators have been used in a wide range of applications, including analogue circuits, MVL (multiple-valued logic) circuits, and various electronic products. A current comparator is generally used in an ADC (analog-to-digital) converter of sensors and similar devices, and several techniques and approaches have been implemented to design the current comparator to improve performance. To this end, this paper presents a bibliographical survey of recently-published research on different current comparator topologies for low-power and high-speed applications. Moreover, several aspects of the CMOS current comparator are discussed regarding the design implementation, parameters, and performance comparison in terms of the power dissipation and operational speed. This review will serve as a comparative study and reference for researchers working on CMOS current comparators in low-power and high-speed applications.