• Title/Summary/Keyword: Diffusion of Hydrogen

Search Result 439, Processing Time 0.024 seconds

ELA를 위한 저수소화 Si 박막의 특성에 관한 연구 (The properties of low hydrogen content silicon thin films for ELA(Excimer Laser Annealing))

  • 권도현;류세원;박성계;남승의;김형준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2000
  • In this study, mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that a mesh was attached to the substrate holding electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied dias. Applied DC bias enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom. The structural properties of poly-Si films were analyzed by scanning electron microscopy(SEM).

  • PDF

고분자 전해질형 연료전지내의 질량유동이 성능에 미치는 영향 (A Study on the Mass Flow Effects to the Performance of PEMFC)

  • 박창권;조인수;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.422-431
    • /
    • 2007
  • Polymer electrolyte membrane fuel cell(PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance and effect of temperature. These problems can be approached to be solved by using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management. In this paper, the present work is to develop an electrochemical model to examine the electrochemical process inside PEM fuel cell. A complete set of considerations of mass, momentum, species and charge is developed and solved numerically with proper account of electrochemical kinetics. When depth of gas channel becomes thinner, diffusion of reactant makes well into gas diffusion layer(GDL) and the performance increases. Although at low current region there is little voltage difference between experimental data of PEM fuel cell and numerical data. When the porosity size of gas diffusion layer for PEM fuel cell is bigger, oxygen diffusion occurs well and oxygen mass fraction appears high in catalyst layer.

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho;Kwak, Young Jun;Song, Myoung Youp
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1403-1411
    • /
    • 2018
  • Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과 (Effects of propane substitution for safety improvement of hydrogen-air flame)

  • 권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

Radiative Transfer in Highly Thick Media through Rayleigh and Raman Scattering with Atomic Hydrogen

  • Chang, Seok-Jun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.40.1-40.1
    • /
    • 2021
  • Hydrogen is the most abundant element in the universe, which is, in the cosmological context, attributed to its simplest structure consisting of a proton and an electron. Hydrogen interacts with an electromagnetic wave in astrophysical environments. Rayleigh scattering refers to elastic scattering, where the frequencies of the incident and scattered photons are the same. Rayleigh and resonance scattering is a critical role study Lyman Alpha objects in the early universe. The scattering causes the frequency and spatial diffusion of Lyα. In the case of Raman scattering, the energies of the incident and scattered photons are different. The photons near Lyβ convert to the optical photons near Hα through Raman scattering. The photon scattered by atomic hydrogen can carry both of the properties of the H I region and the emission region. I adopt a Monte Carlo approach to investigate the formation of the various spectral line features through Rayleigh and Raman scattering in highly thick media of atomic hydrogen. In this thesis, I present my works on radiative transfer involving the scattering processes between far UV photon and atomic hydrogen. I introduce scattering processes with atomic hydrogen and the spectral, spatial, and polarized information originating from the scattering.

  • PDF

메탄-공기 확산화염에서 수소 첨가 효과에 관한 연구 (A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame)

  • 박준성;김정수;김성초;길상인;윤진한;김우현;박정
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.384-391
    • /
    • 2007
  • Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • 제1권2호
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성 (Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air)

  • 오정석;김문기;윤영빈
    • 한국항공우주학회지
    • /
    • 제36권4호
    • /
    • pp.352-356
    • /
    • 2008
  • 수소제트와 동축공기를 사용한 본 연구에서, 난류확산화염의 화염안정성 특징을 실험적으로 수행하였다. 목적은 연료속도 증가에 따라 감소하는 부상화염길이의 경향을 보고하고, 부상 메커니즘을 포함한 화염구조를 분석하는 것이다. 수소연료는 100에서 300 m/s 사이에서 조절되었으며, 이때 동축공기는 16 m/s 고정되고, 주위류는 0.1 m/s 이하로 유지되었다. 유동장과 연소장 동시측정을 위하여, 두 대의 Nd:Yag 레이저와 CCD 카메라를 이용하여 PIV와 OH PLIF 기법이 사용되었다. 결론적으로 난류화염전파속도는 난류강도에 비례하였으며, 제트 레이놀즈수의 0.017승에 비례하였다.

수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구 (A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station)

  • 김동환;박송현;구연진;김필종;허윤실
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

소형펀치시험에 의한 TRIP강의 수소 지연파괴 거동 (Hydrogen Delayed Fracture of TRIP Steel by Small Punch Test)

  • 최종운;박재우;강계명
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.42-47
    • /
    • 2013
  • The strain-induced phase transformation from austenite to martensite is responsible for the high strength and ductility of TRIP steels. However high strength steels are susceptible to hydrogen embrittlement. This study aimed to evaluate the effects of hydrogen on the behavior of hydrogen delayed fracture in TRIP steel with hydrogen charging conditions. The electrochemical hydrogen charging was conducted at each specimen with varying current density and charging time. The relationship between hydrogen concentration and mechanical properties of TRIP steel was established by SP test and SEM fractography. The maximum loads and displacements of the TRIP steel in SP test decreased with increasing hydrogen charging time. The results of SEM fractography investigation revealed typical brittle mode of failure. Thus it was concluded that hydrogen delayed fracture in TRIP steel result from the diffusion of hydrogen through the ${\alpha}$' phase.