Browse > Article
http://dx.doi.org/10.3795/KSME-B.2007.31.4.384

A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame  

Park, June-Sung (순천대학교 기계공학과대학원)
Kim, Jeong-Soo (순천대학교 기계우주항공공학부)
Kim, Sung-Cho (순천대학교 기계우주항공공학부)
Keel, Sang-In (한국기계연구원 환경에너지기계연구본부)
Yun, Jin-Han (한국기계연구원 환경에너지기계연구본부)
Kim, Woo-Hyun (한국기계연구원 환경에너지기계연구본부)
Park, Jeong (부경대학교 기계공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.31, no.4, 2007 , pp. 384-391 More about this Journal
Abstract
Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.
Keywords
Chain Initiation Reaction; Global Strain Rate; $H_2$-CO Consumtion Layer; Methane Consumption Layer; Prompt NO; Thermal NO;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Smith, G. P., Golden, D. M., Frenklach, N. W., Eiteneer, M. B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Dong, S., Gardiner, W. C., Lissianski, Jr.-VV, Qin, Z., 2006, http://www.me.berkeley. edu/gri_mech/
2 Westbrook, C. K., Dryer, F. L., 1984, 'Chemical Kinetic Modeling of Hydrovarbon Combustion' Prog. Energy Combust. Sci. Vol. 10, p. 1   DOI   ScienceOn
3 Seshadri, K., Peters, N., 1988, 'Asymptotic Structure and Extinction of Methane-Air Diffusion Flames,' Comb. Flame Vol. 73, pp. 23-44   DOI   ScienceOn
4 Park, J., Lee, K. M., Lee, E. J., 2001, 'Effects of $CO_2$ Addition on Flame Structure in Counterflow Diffusion Flame of $H_2/CO_2/N_2$ Fuel,' Int. J. of Energy Research Vol. 25, pp. 469-485   DOI   ScienceOn
5 Kee, R. J., Rupley, F. M., Miller, J. A., 1989, 'Chemkin II: A Fortran Chemical Kinetics Package for Analysis of Gas Phase Chemical Kinetics,' Sandia Report, SAND89-8009B
6 Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., Miller, J. A., 1994, 'A Fortran Computer Code Package for the Evaluation of Gas-Phase Multi-ComponentTransport,' Sandia Report, SAND86-8246
7 Ren, J-Y, Qin, W., Egolfopoulos, F. N., Tsotsis, T. T., 2001, 'Strain-Rate Effects on Hydrogen-Enhanced Lean Premixed Combustion,' Comb. Flame Vol. 124, pp. 717-720   DOI   ScienceOn
8 Kee, R. J., Miller, J. A., Evans, G. H., Dixon-Lewis, G., 1988, 'A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flame,' Proc. Combustion Inst. Vol. 22, p. 1479
9 Lutz, A. E., Kee, R. J., Grcar, J. F., Rupley, F. M., 1997, 'A Fortran Program for Computing Opposed-Flow Diffusion Flames,' Sandia Report, SAND96-8243
10 Ju, Y., Guo, H., Maruta, K., Liu, F., 1997, 'On the Extinction Limit and Flammability Limit of Non-Adiabatic Stretched Methane-Air Premixed Flames,' J. Fluid Mech. Vol. 342, p. 315   DOI   ScienceOn
11 Hawkes, E. R., Chen, J. H., 2004, 'Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane-Air Flames,' Comb. Flame Vol. 138, pp. 242-258   DOI   ScienceOn
12 Refael, S., Sher, E., 1989, 'Reaction Kinetics of Hydrogen-Enriched Methane-Air and Propane-Air Flames,' Comb. Flame Vol. 78, pp. 326-338   DOI   ScienceOn
13 Jackson, G. S., Sai, R., Plaia, J. M., Boggs, C. M., Kiger, K. T., 2003, 'Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows,' Comb. Flame Vol. 132, pp. 503-511   DOI   ScienceOn
14 Park, J., Hwang, D. J., Choi, J. G., Lee, K. M., Keel, S. I., Shim, S. H., 2003, 'Chemical Effects of CO2 addition to oxidizer and fuel streams on Flame Structure in H2-O2 Counterflow Diffusion Flames,' lnt. J. Energy Research, Vol. 27, pp. 1205-1220   DOI   ScienceOn