DOI QR코드

DOI QR Code

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Choi, Eunho (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Kwak, Young Jun (Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • Received : 2018.03.19
  • Accepted : 2018.05.28
  • Published : 2018.11.20

Abstract

Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN=2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN=3 at 593 K in 12 bar $H_2$. At CN=1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1(8), 1533 (1989) https://doi.org/10.1088/0953-8984/1/8/017
  2. A. Karty, J.G. Genossar, P.S. Rudman, J. Appl. Phys. 50(11), 7200 (1979) https://doi.org/10.1063/1.325832
  3. J.-L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Int. J. Hydrogen Energy 25(10), 987 (2000) https://doi.org/10.1016/S0360-3199(00)00002-1
  4. J.J. Reilly, R.H. Wiswall, Inorg. Chem. 7(11), 2254 (1968) https://doi.org/10.1021/ic50069a016
  5. M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, L. Pasquini, Int. J. Hydrogen Energy 41(32), 14447 (2016) https://doi.org/10.1016/j.ijhydene.2016.03.071
  6. N.E. Tran, M.A. Imam, C.R. Feng, J. Alloy. Compd. 359(1-2), 225 (2003) https://doi.org/10.1016/S0925-8388(03)00176-2
  7. J. Huot, M.-L. Tremblay, R. Schulz, J. Alloy. Compd. 356-357, 603 (2003) https://doi.org/10.1016/S0925-8388(03)00120-8
  8. L. Popilevsky, V.M. Skripnyuk, M. Beregovsky, M. Senzen, Y. Amouyal, E. Rabkin, Int. J. Hydrogen Energy 41(32), 14461 (2016) https://doi.org/10.1016/j.ijhydene.2016.03.014
  9. L. Guoxian, W. Erde, F. Shoushi, J. Alloy. Compd. 223(1), 111 (1995) https://doi.org/10.1016/0925-8388(94)01465-5
  10. G. Lian, S. Boily, J. Huot, A. van Neste, R. Schulz, J. Alloy. Compd. 268(1-2), 302 (1998) https://doi.org/10.1016/S0925-8388(97)00607-5
  11. M. Khrussanova, J.-L. Bobet, M. Terzieva, B. Chevalier, D. Radev, P. Peshev, B. Darriet, J. Alloy. Compd. 307(1-2), 283 (2000) https://doi.org/10.1016/S0925-8388(00)00842-2
  12. H. Chu, S. Qiu, L. Sun, J. Huot, Dalton Trans. 44, 16694 (2015) https://doi.org/10.1039/C5DT01847A
  13. J. Huot, N.Y. Skryabina, D. Fruchart, Metals 2, 329-343 (2012). https ://doi.org/10.3390/met20 30329
  14. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, T. Fukunaga, Acta Mater. 51(20), 6407 (2003) https://doi.org/10.1016/j.actamat.2003.08.010
  15. M.Y. Song, S.H. Baek, J.-L. Bobet, J. Song, S.-H. Hong, Int. J. Hydrogen Energy 35(19), 10366 (2010) https://doi.org/10.1016/j.ijhydene.2010.07.161
  16. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006) https://doi.org/10.1103/PhysRevLett.97.187401
  17. https ://www.nanop hoton .net/appli catio ns/22.html
  18. https ://tools .therm ofish er.com/conte nt/sfs/broch ures/D1950 5-.pdf
  19. Rusi, S.R. Majid, Sci. Rep. 5, 16195 (2015) https://doi.org/10.1038/srep16195
  20. J.F. Stampfer Jr., C.E. Holley Jr., J.F. Suttle, J. Am. Chem. Soc. 82(14), 3504 (1959) https://doi.org/10.1021/ja01499a006
  21. S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 358 (2016) https://doi.org/10.3365/KJMM.2016.54.5.358
  22. S.-H. Hong, M.Y. Song, Met. Mater. Int. 22, 544 (2016) https://doi.org/10.1007/s12540-016-5557-0
  23. M.Y. Song, Y.J. Kwak, H.R. Park, Korean J. Met. Mater. 54, 503 (2016) https://doi.org/10.3365/KJMM.2016.54.7.503
  24. S.N. Kwon, H.R. Park, M.Y. Song, Korean J. Met. Mater. 54, 510 (2016) https://doi.org/10.3365/KJMM.2016.54.7.510
  25. H.R. Park, Y.J. Kwak, M.Y. Song, Korean J. Met. Mater. 55, 656 (2017)

Cited by

  1. Effects of Zn(BH4)2, Ni, and/or Ti Doping on the Hydrogen-Storage Features of MgH2 vol.57, pp.3, 2018, https://doi.org/10.3365/kjmm.2019.57.3.176
  2. Adsorption of Pd(II) onto Zr(IV) Based Metal-Organic Framework UIO-66-NH2 from Hydrochloric Acid Solution vol.57, pp.9, 2018, https://doi.org/10.3365/kjmm.2019.57.9.589
  3. Improvement of the Hydrogen-Release Features of Mg-Graphene Composite by Adding Nickel via Reactive Ball Milling vol.57, pp.10, 2019, https://doi.org/10.3365/kjmm.2019.57.10.663
  4. Effects of Growth Temperature on the Physicochemical and Photoelectrochemical Properties of a Modified Chemical Bath Deposited Fe2O3 Photoelectrode vol.58, pp.4, 2018, https://doi.org/10.3365/kjmm.2020.58.4.263