DOI QR코드

DOI QR Code

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air

부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성

  • 오정석 (서울대학교 기계항공공학부원) ;
  • 김문기 (서울대학교 기계항공공학부원) ;
  • 윤영빈 (서울대학교 기계항공공학부)
  • Published : 2008.04.01

Abstract

In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

수소제트와 동축공기를 사용한 본 연구에서, 난류확산화염의 화염안정성 특징을 실험적으로 수행하였다. 목적은 연료속도 증가에 따라 감소하는 부상화염길이의 경향을 보고하고, 부상 메커니즘을 포함한 화염구조를 분석하는 것이다. 수소연료는 100에서 300 m/s 사이에서 조절되었으며, 이때 동축공기는 16 m/s 고정되고, 주위류는 0.1 m/s 이하로 유지되었다. 유동장과 연소장 동시측정을 위하여, 두 대의 Nd:Yag 레이저와 CCD 카메라를 이용하여 PIV와 OH PLIF 기법이 사용되었다. 결론적으로 난류화염전파속도는 난류강도에 비례하였으며, 제트 레이놀즈수의 0.017승에 비례하였다.

Keywords

References

  1. Chen, Y. C. and Bilger, R. W., 2000, "Stabilization Mechanisms of Lifted Laminar Flames in Axisymmetric Jet Flows", Combustion and Flame, Vol. 122, pp. 377-399 https://doi.org/10.1016/S0010-2180(00)00120-6
  2. Scheffer, R. W. and Goix, P. J., 1998, "Mechanism of Flame Stabilization in Turbulent", Lifted-Jet Flames, Combustion and Flame, Vol. 112, pp. 559-574 https://doi.org/10.1016/S0010-2180(97)00130-2
  3. Lee, J. and Chung, S. H., 2001, "Characteristics of Reattachment and Blowout of Laminar Lifted Flames in Partially Premixed Propane Jets", Combustion and Flame, Vol. 127, pp. 2194-2204 https://doi.org/10.1016/S0010-2180(01)00321-2
  4. Lee, J., Won, S. H., Jin, S. H. and Chung, S. H., 2003, "Lifted flames in laminar jets of propane in coflow air", Combustion and Flame, Vol. 135, pp. 449-462 https://doi.org/10.1016/S0010-2180(03)00182-2
  5. Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D., 1999, "Scalar and Velocity Field Measurements in a Lifted CH4-Air Diffusion Flame", Combustion and Flame, Vol. 117, pp. 257-271 https://doi.org/10.1016/S0010-2180(98)00086-8
  6. Kalghatgi, G. T., 1984, "Liftoff heights and visible flame lengths of vertical turbulent jet diffusion flames in still air", Combust. Sci. Technol., Vol. 41, pp. 17-29 https://doi.org/10.1080/00102208408923819
  7. Chen, Y. C., Chang, C. C., Pan, K. L. and Yang, J. T., 1998, "Flame Liftoff and Stabilization Mechanisms of Nonpremixed Jet Flames on a Bluff-body Burner", Combustion and Flame, Vol. 115, pp. 51-65 https://doi.org/10.1016/S0010-2180(97)00336-2
  8. 김문기, 윤영빈, 2004, "수소난류 비예혼합 화염의 PIV/OH PLIF 동시측정 실험 연구", 한국항공우주학회 춘계학술발표회, PP. 641-648
  9. Muniz, L. and Mungal, M. G., 1997, "Instantaneous Flame-Stabilization Velocities in Lifted-Jet Diffusion Flames", Combustion and Flame, Vol. 111, pp. 16-31 https://doi.org/10.1016/S0010-2180(97)00096-5
  10. Tennekes, H. and Lumley, J. L., 1999, "A First Course in Turbulence", MIT Press