• Title/Summary/Keyword: Diffusion magnitude

Search Result 110, Processing Time 0.025 seconds

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry

  • Jang, Yu-Mi;Oh, Jun-Sik;Park, Chang-Joon;Yang, Sang-Sik;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2791-2796
    • /
    • 2010
  • In the present study, we constructed a membrane inlet assembly for selective permeation of volatile airborne organic compounds for subsequent analysis by time-of-flight mass spectrometry. The time-dependent diffusion of analytes through a $75\;{\mu}m$ thick polydimethylsiloxane membrane was measured by monitoring the ion signal after a step change in the sample concentration. The results fit well to a non-steady-state permeation equation. The diffusion coefficient, response time, and sensitivity were determined experimentally for a range of polar (halogenated) and nonpolar (aromatic) compounds. We found that the response times for several volatile organic compounds were greatly influenced by the alkyl chain length as well as the size of the substituted halogen atoms. The detection limits for benzene, ethylbenzene, and 2-propanol were 0.2 ppm, 0.1 ppm, and 3.0 ppm by volume, respectively, with a linear dynamic range greater than three orders of magnitude. These results indicate that the membrane inlet/time-of-flight mass spectrometry technique will be useful for a wide range of applications, particularly for in situ environmental monitoring.

The Effect of n-Alkanols on the Lateral Diffusion of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Cerebral Cortex (n-Alkanols가 소의 대뇌피질로부터 분리한 Synaptosomal Plasma Membrane Vesicles의 측방확산운동 범위와 속도에 미치는 영향)

  • Chung, In-Kyo;Kang, Jung-Sook;Yun, Il
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.157-163
    • /
    • 1993
  • Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane (Py-3-Py) was used to investigate the effects of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV). The n-alkanols increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMV. In a dose-dependent manner, n-alkanols increased lateral diffusion of hydrocarbon region of bulk (inner+outer monolayers) SPMV lipid bilayers, and the potencies of n-alkanols up to l-nonanol increased with carbon chain length. It appears that the potencies in bilayer fluidization due to the lateral diffusion increase by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in pharmacological activity.

  • PDF

Study on self-diffusion transport phenomena during mercurous bromide (Hg2Br2) vapor processes (브로민화수은(I)(Hg2Br2) 증착공정에서 자체확산 연구)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.48-54
    • /
    • 2024
  • During the Hg2Br2 physical vapor transport process with self-diffusion, it is concluded that for 10-3g0≤ g ≤ 1g0 the thermal buoyancy driven convection is dominant in the vapor phase; at the gravitational level of g = 10-4g0, the transition region from the convection to diffusion occurs; for 10-6g0 ≤ g ≤ 10-5g0, the diffusion mode is predominant. The total molar flux of Hg2Br2 decays exponentially with the decreasing of one tenth of gravitational magnitude. For 10℃ ≤ ΔT ≤ 50℃, the total molar flux increases linearly and directly with the temperature difference between the source and crystal regions.

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

Measurement of Net Photosynthetic Rate in the Plug Stand (플러그묘 개체군의 순광합성속도 측정)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • Two methods were used to detrermine the net photosynthetic rate(NPR) in the plug stand using a wind tunnel for plug seedlings Production. One is called as the integration method in which NPR calculated by the use of air current speed and $CO^2$ concentration measured at any heights above the medium surface in a wind tunnel were summed. It was assumed that the air flow at any layer did not mix with the lower or upper air layer. The other is called as the diffusion method in which eddy diffusivities above the plug stand were used to determine the NPR in the plug stand. In this method, $CO^2$ above or inside the plug stand was assumed to be absorbed vertically. NPR determined by the diffusion method was 28~45% of the NPR calculated by the integration method. Considering the magnitude of NPR and the effects of the air current speed on NPR, the integration method would be adequate for the calculation of NPR in the plug stand. Maximum NPR determined using the integration method appeared at the air current speed of 0.7m $s^{-1}$. It was ascribed to the decreased diffusion resistances of $CO^2$ with the increasing air current speed. NPR at the rear region in plug stand was 20~34% lower than that at the front region. NPR sharply decreased with the increase of an elapsed time after the beginning of photoperiod. Therefore $CO^2$ enrichment would be effective to force the growth of plug seedlings in a semi-closed ecological system under artificial lighting.

  • PDF

A Study on the Breakdown Voltage Characteristics with Process and Design Parameters in Trench Gate IGBT (트렌치 게이트 IGBT 에서의 공정 및 설계 파라미터에 따른 항복 전압 특성에 관한 연구)

  • Shin, Ho-Hyun;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.403-409
    • /
    • 2007
  • In this paper, effects of the trench angle($\theta$) on the breakdown voltage according to the process parameters of p-base region and doping concentrations of n-drift region in a Trench Gate IGBT (TIGBT) device were analyzed by computer simulation. Processes parameters used by variables are diffusion temperature, implant dose of p-base region and doping concentration of n-drift region, and aspects of breakdown voltage change with change of each parameter were examined. As diffusion temperature of the p-base region increases, depth of the p-base region increases and effect of the diffusion temperature on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 134.8 % in the case of high trench angle($90\;^{\circ}$). Moreover, as implant dose of the p-base region increases, doping concentration of the p-base region increases and effect of the implant dose on the breakdown voltage is very low in the case of small trench angle($45\;^{\circ}$) but that is increases 232.1 % in the case of high trench angle($90\;^{\circ}$). These phenomenons is why electric field concentrated in the trench is distributed to the p-base region as the diffusion temperature and implant dose of the p-base increase. However, effect of the doping concentration variation in the n-drift region on the breakdown voltage varies just 9.3 % as trench angle increases from $45\;^{\circ}$ to $90\;^{\circ}$. This is why magnitude of electric field concentrated in the trench changes, but direction of that doesn't change. In this paper, respective reasons were analyzed through the electric field concentration analysis by computer simulation.

Study on Ohmic resistance of Zn-doping InP using RTA method (RTA 방법에 의해 Zn 도핑된 InP의 오믹저항 특성연구)

  • Kim, H.J.;Kim, I.S.;Kim, T.U.;Kim, S.T.;Kim, S.H;Ki, H.C.;Lee, K.M.;Yang, M.H.;Ko, H.J.;Kim, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.237-238
    • /
    • 2008
  • Electrical properties of Pd/Zn/Pd/Au contacts to p-InP were investigated as function of the V/III ratio of p-InP. P-type InP was made by the Zn diffusion into InP and activation process with rapid thermal annealing (RTA) measurement. After activation, the hole concentration was two orders of magnitude higher than that of the sample having only diffusion process. According to transmission line method (TLM) results, the specific contact resistance of p-InP was lower as used InP having the lower V/III ratio. The experimental results represent that the diffusion of Zn in undoped InP deeply related to the equilibrium between interstitials and substitutional Zn is established via indium interstitials.

  • PDF

Enhancement of Ca2+ Current Does Not Regulate the Speed of Depolarization-induced Ca2+ Propagation Wave in Rat Atrial Myocytes

  • Woo, Sun-Hee;Hwang, Seon-Hwa;Kim, Joon-Chul;Morad, Martin
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.212-217
    • /
    • 2007
  • In atrial myocytes, lacking t-tubules, $Ca^{2+}$ current ($I_{Ca}$)-initiated $Ca^{2+}$ release at the peripheral junctional sites propagates into the interior of the cell by diffusion of $Ca^{2+}$. We have previously reported that time of activation of the central sites is independent of $I_{Ca}$. In the present study we have probed the effects of Bay K 8644 on $Ca^{2+}$ propagation wave to the center of the myocyte using rapid 2-D confocal $Ca^{2+}$ imaging in the rat atrial myocytes. Enhancement of $I_{Ca}$ by Bay K 8644 accelerated the rate of peripheral $Ca^{2+}$ release, but did not affect the speed of propagation of central release. In contrast, enhancement of $I_{Ca}$ by intracellular cAMP reduced the magnitude of peripheral and central $Ca^{2+}$ transients, but significantly accelerated the speed of central $Ca^{2+}$ release. Our data suggest that the speed of central $Ca^{2+}$ propagation triggered by $I_{Ca}$ is not regulated by the magnitude of either $I_{Ca}$ or local cytosolic $Ca^{2+}$ releases.

Effects of Drive-in Process Parameters on the Residual Stress Profile of the p+ Silicon Film (후확산 공정 변수가 p+ 실리콘 박막의 잔류 응력 분포에 미치는 영향)

  • Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.245-247
    • /
    • 2002
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the p+ silicon film. For the quantitative determination of the residual stress profiles, the test samples are doped via the fixed boron diffusion process and four types of the thermal oxidation processes and consecutively etched by the improved process. The residual stress measurement structures with the different thickness are simultaneously fabricated on the same silicon wafer. Since the residual stress profile is not uniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All of the coefficients of the polynomial are determined from the deflections of cantilevers and the displacement of a rotating beam structure. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Also, near the surface of the p+ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF