DOI QR코드

DOI QR Code

브로민화수은(I)(Hg2Br2) 증착공정에서 자체확산 연구

Study on self-diffusion transport phenomena during mercurous bromide (Hg2Br2) vapor processes

  • 김남일 (한남대학교 화학공학과) ;
  • 김극태 (한남대학교 화학공학과)
  • Nam Il Kim (Department of Chemical Engineering, Hannam University) ;
  • Geug Tae Kim (Department of Chemical Engineering, Hannam University)
  • 투고 : 2024.02.15
  • 심사 : 2024.03.11
  • 발행 : 2024.04.30

초록

브로민화 수은(I)(Hg2Br2) 자체 확산 물리적 증착법 공정에서 자체 확산 전달현상 연구에서 얻어진 결론은 10-3g0 ≤ g ≤ 1g0 영역에서는 열 대류현상이 지배적이며, g = 10-4g0 영역에서는 대류에서 확산영역으로 전이되는 영역이며, 10-6g0 ≤ g ≤ 10-5g0 영역에서는 확산모드가 지배적이다. Hg2Br2의 총 몰플럭스는 중력가속도의 레벌(level)이 1/10 크기로 감소함에 따라 기하급수적으로 감소함을 나타내고 있다는 것이다. 10℃ ≤ ΔT ≤ 50℃의 온도차 범위에서는 온도차(ΔT)와 Hg2Br2의 총 몰플럭스에 대한 관계식은 선형적으로 직선적 비례관계성을 보여주고 있다.

During the Hg2Br2 physical vapor transport process with self-diffusion, it is concluded that for 10-3g0≤ g ≤ 1g0 the thermal buoyancy driven convection is dominant in the vapor phase; at the gravitational level of g = 10-4g0, the transition region from the convection to diffusion occurs; for 10-6g0 ≤ g ≤ 10-5g0, the diffusion mode is predominant. The total molar flux of Hg2Br2 decays exponentially with the decreasing of one tenth of gravitational magnitude. For 10℃ ≤ ΔT ≤ 50℃, the total molar flux increases linearly and directly with the temperature difference between the source and crystal regions.

키워드

과제정보

본 연구는 2023년도 한남대학교 학술연구비(과제번호: 2023A107)의 지원을 받아 수행되었습니다.

참고문헌

  1. N.B. Singh, M. Gottlieb, A.P. Goutzoulis, R.H. Hopkins and R. Mazelsky, "Mercurous bromide acoustooptic devices", J. Cryst. Growth 89 (1988) 527. 
  2. N.B. Singh, M. Gottlieb, G.B. Branddt, A.M. Stewart, R.H. Hopkins, R. Mazelsky and M.E. Glicksman, "Growth and characterization of mercurous halide crystals: mercurous bromide system", J. Cryst. Growth 137 (1994) 155. 
  3. T.H. Kim, H.T. Lee, Y.M. Kang, G.E. Jang, I.H. Kwon and B. Cho, "In-depth investigation of Hg2Br2 crystal growth and evolution", Materials 12 (2019) 4224. 
  4. O. Kwon, K. Kim, S.-G. Woo, G.-E. Jang and B. Cho, "Comparative analysis of Hg2Br2 and Hg2BrxCl2-x Crystals Grown via PVT", Crystals 10 (2020) 1096. 
  5. S.K. Kim, S.Y. Son, K.S. Song, J.-G. Choi and G. T. Kim, "Mercurous bromide (Hg2Br2) crystal growth by physical vapor transport and characterization", J. Korean Cryst. Growth and Cryst. Technol. 12 (2002) 272. 
  6. G.T. Kim and M.H. Kwon, "Lead bromide crystal growth from the melt and characterization: the effects of nonlinear thermal boundary conditions on convection during physical vapor crystal growth of mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 13 (2004) 187. 
  7. G.T. Kim, "Growth and characterization of lead bromide: application to mercurous bromide", J. Korean Cryst. Growth and Cryst. Technol. 14 (2004) 50. 
  8. G.T. Kim and M.H. Kwon, "Effects of solutally dominant convection on physical vapor transport for a mixture of Hg2Br2 and Br2 under microgravity environments", Korean Chem. Eng. Res. 52 (2014) 75. 
  9. S.H. Ha and G.T. Kim, "Preliminary studies on double-diffusive natural convection during physical vapor transport crystal growth of Hg2Br2 for the spaceflight experiments", Korean Chem. Eng. Res. 57 (2019) 289. 
  10. G.T. Kim, "Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 under µg conditions", J. Korean Cryst. Growth and Cryst. Technol. 29 (2019) 107. 
  11. G.T. Kim and M.H. Kwon, "Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth and Cryst. Technol. 30 (2020) 117. 
  12. G.T. Kim and M.H. Kwon, "Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2", J. Korean Cryst. Growth and Cryst. Technol. 31(2021) 1. 
  13. S.H. Ha and G.T. Kim, "Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer", J. Korean Cryst. Growth and Cryst. Technol. 32 (2022) 16. 
  14. G.T. Kim and M.H. Kwon, "Fundamental studies on thermosolutal convection in mercurous bromide (Hg2Br2) physical vapor transport processes", J. Korean Cryst. Growth and Cryst. Technol. 33 (2023) 110. 
  15. S.V. Patankar, "Numerical heat transfer and fluid flow", (Hemisphere Publishing Corp., Washington D.C., 1980).