• 제목/요약/키워드: Diffusion barrier

검색결과 461건 처리시간 0.021초

Cu/Ti-cappng/NiSi 전극구조 p+/n 접합의 전기적 특성 (Electrical Characteristics of p+/n Junctions with Cu/Ti-capping/NiSi Electrode)

  • 이근우;김주연;배규식
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.318-322
    • /
    • 2005
  • Ti-capped NiSi contacts were formed on $p^+/n$ junctions to improve the leakage problem and then Cu was deposited without removing the Ti-capping layer in an attempt to utilize as a diffusion barrier. The electrical characteristics of these $p^+/n$ diodes with Cu/Ti/NiSi electrodes were measured as a function of drive-in RTA(rapid-thermal annealing) and silicidation temperature and time. When drive-in annealed at $900^{\circ}C$, 10 sec. and silicided at $500^{\circ}C$, 100 sec., the diodes showed the most excellent I-V characteristics. Especially, the leakage current was $10^{-10}A$, much lower than reported data for diodes with NiSi contacts. However, when the $p^+/n$ diodes with Cu/Ti/NiSi contacts were furnace-annealed at $400^{\circ}C$ for 40 min., the leakage current increased by 4 orders. The FESEM and AES analysis revealed that the Ti-capping layer effectively prohibited the Cu diffusion, but was ineffective against the NiSi dissociation and consequent Ni diffusion.

Cu/Capping Layer/NiSi 접촉의 상호확산 (Interdiffusion in Cu/Capping Layer/NiSi Contacts)

  • 유정주;배규식
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.463-468
    • /
    • 2007
  • The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Diffusion Coefficients and Membrane Potential within Carrier Membrane by Reverse Transport System

  • Yang, Wong-Kang;Jeong, Sung-Hyun;Lee, Won-Chul
    • Korean Membrane Journal
    • /
    • 제4권1호
    • /
    • pp.36-40
    • /
    • 2002
  • The diffusion coefficients of ions in the reverse transport system using the carrier mediated membrane were estimated from the diffusional membrane permeabilities and the ion activity in membrane system. In the aqueous alkali metal ions-membrane system diffusional flux of alkali metal ions driven by coupled proton was analyzed. The aqueous phase I contained NaOH solution and the aqueous phase II also contained NaCl and HCl mixed solution. The concentration of Na ions of both phases were $10^{0},\;10^{-1},\;10^{-2},\;5{\times}10^{-1}\;and\;5{\times}10^{-2}\;mol{\cdot}dm^{-3}$ and the concentration of HCI in aqueous phase II was always kept at $1{\times}10^{-1}\;mol{\cdot}dm^{-3}$. Moreover, the carrier concentration in liquid membrane was $10^{-2}\;mol{\cdot}dm^{-3}$. The results indicated that the diffusion coefficients depend strongly on the concentration of both phases electrolyte solution equilibriated with the membrane. The points were interpreted in terms of the energy barrier theory. Furthermore, eliminating the potential terms from the membrane equation was derived.

C-V 측정에 의한 Cu 확산방지막 특성 평가 (The characterization of a barrier against Cu diffusion by C-V measurement)

  • 이승윤;라사균;이원준;김동원;박종욱
    • 한국진공학회지
    • /
    • 제5권4호
    • /
    • pp.333-340
    • /
    • 1996
  • Cu 확산방지막으로서의 Tin의 특성을 면저항 특정, X선 회절 분석, SEM, AES, capacitance-voltage(C-V) 측정에 의하여 평가하고, Cu의 확산을 민감하게 알아내는 정도를 특성 평가 방법간에 비교하였다. 여러 가지 증착방법에 의하여 Cu/TiN/Ti/SiO2/Si 구조의 다층 박막시편을 제작하였으며, 이 시편을 10% H2/90% Ar분위기, 열처리 온도 500~$800{\circ}C$ 범위에서 2시간 동안 열처리하였다. TiN의 Cu 확산방지 효과가 소멸된 경우 Cu 박막 표면에서 불규칙한 모양의 spot을 관찰할 수 있었으며 outdiffusion된 Si를 검출할 수 있었다. MOS capacitor의 C-V 특성은 열처리 온도에 따라 급격하게 변화하였다. C-V 측정에서 inversion capacitance는 열처리 온도 500~$700^{\circ}C$범위에서 열처리 온도가 높아질수록 감소하다가 $800^{\circ}C$에서 크게 증가하였으며, 이러한 특성의 변화는 TiN을 통해서 $SiO_2$와 Si내로 확산된 Cu에 의하여 발생되는 것으로 생각된다.

  • PDF