• Title/Summary/Keyword: Diffusion Plate

Search Result 231, Processing Time 0.031 seconds

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

Feasibility Study of Diffusion Film for the Light Guide of Gamma Ray Imaging System

  • Cha, Hyemi;Min, Eungi;Lee, Kisung;Jung, Young-Jun;Lee, Hakjae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • A light guide improves the spatial resolution of a gamma ray imaging system by diffusing the scintillation light. Similarly, light diffusion film, which has been applied to flat-panel-display engineering, spreads the light from the light guide panel. In this study, we adopted light diffusion film for the light guide of a gamma ray imaging system, and evaluated its diffusion characteristics. We compared the light diffusion performance of the film to an ordinary acrylic plate. As a result, the diffusion film widely spreads scintillation light. As for the thickness of the light guide, we acquired more distinct images with three films overlapped than with an acrylic plate. We expect light diffusion film to be a promising candidate for light guides in gamma ray imaging systems.

Effect of Ni Content and Atmosphere Gas Pressure on the Carburizability Low-Carbon Alloy Steels During Fluidized-bed Carburizing (유동상 침탄시 저탄소 합금강의 침탄능에 미치는 Ni 함량 및 분위기 가스압력의 영향)

  • Roh, Y.S.;Kim, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.3
    • /
    • pp.5-12
    • /
    • 1990
  • This study has been conducted to establish the carburizing characteristics of low carbon alloy steels with varying amount of Ni element gas-carburized for 2 hours at $930^{\circ}C$ in an atmosphere of 94% $N_2$-6% $C_3H_8$ gas mixture with some changes in gas pressure passing through the diffusion plate in the fluidized-bed furnace. The results obtained from the experiment are as follows : (1) Optical micrograph has shown that the carburized layer consists of retained austenite and plate martensite and that retained austenite increases as the pressure of gas mixture passing through the diffusion plate as well as Ni content increase. (2) Chemical analysis has shown that carbon potential increases and carburizability is also improved due to a less degree of fluidization as the pressures of gas mixtures passing through the diffusion plate increase, resulting in, however, a severe formation of soot, and the gas pressure is necessarily regulated. (3) It has been revealed that carbon concentration hardness values at a given distance measured from the surface within the carburized case. Increase with increasing the pressure of gas mixtures passing through the diffusion plate and decrease with increasing Ni content. (4) The effective case depth has been shown to almost linearly increase as the pressure of gas mixtures passing through the diffusion plate is increased and to decrease with increasing Ni content.

  • PDF

EFFECT OF HEAT ABSORPTION ON UNSTEADY MHD FLOW PAST AN OSCILLATING VERTICAL PLATE WITH VARIABLE WALL TEMPERATURE AND MASS DIFFUSION IN THE PRESENCE OF HALL CURRENT

  • RAJPUT, US;KANAUJIA, NEETU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.241-251
    • /
    • 2018
  • The present study is carried out to examine the combined effect of heat absorption on flow model. The model consists of unsteady flow of a viscous, incompressible and electrically conducting fluid. The flow is along an impulsively started oscillating vertical plate with variable mass diffusion. The magnetic field is applied perpendicular to the plate. The fluid model under consideration has been solved by Laplace transform technique. The numerical data obtained is discussed with the help of graphs and table. The numerical values obtained for skin-friction have been tabulated. To shorten the lengthy equations in the solution some symbols have been assumed, which are mentioned in appendix. The appendix is included in the article as the last section of the manuscript.

Study on the Optical Properties of Light Diffusion Film with Plate Type Hollow Silica

  • Lee, Ji-Seon;Moon, Seong-Cheol;Noh, Kyeong-Jae;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.429-437
    • /
    • 2017
  • Micro hollow plate type silica with low refraction properties was synthesized and its hollow structure was applied as an optical structure to develop a light diffusion material that simultaneously satisfies the requirements of good light diffusibility, high transmissibility, and high luminance. The developed light diffusion material was applied to a light diffusion film and the film's optical properties were assessed. Hollow silica was synthesized by precipitation method using $Mg(OH)_2$ core particles, sodium silicate, and ammonium sulfate as the silica precursors. The concentration of the silica precursor was adjusted to control hollow silica shell thickness. The total light transmittance of the light diffusion film composed of the hollow silica was 94.55%, which was 4.57% higher than that of the PC film; new film's haze was 71.20%, which was 70.9% higher. Furthermore, the luminance increased by 5.34% compared to that of the light source. The reason for the results is not only that the micro plate type hollow silica, which has a low refractive property, played a role in reducing the difference in refractive index between the medium boundaries, but also that there was a light-concentrating effect due to the changing of light paths to the front direction inside the hollow structure. Optical simulation verified the enhanced optical properties when hollow silica was applied to the light diffusion film.

Analysis of Low-Frequency Magnetic SE of a Metal Plate: Diffusion and Slot Effects (도체 판의 자기장 차폐효과 분석: 확산과 슬롯 효과)

  • Park, Hyun Ho;Kwon, Jong Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.324-327
    • /
    • 2019
  • This study analyzes the low-frequency magnetic shielding effectiveness (SE) of a metal plate, in terms of diffusion and slot effects, by conducting a numerical simulation and implementing an analytical solution. When the metal has a low conductivity, the SE is dominated by the diffusion effect. However, when the conductivity and frequency both increase, the slot has a major influence on the SE. These results can be used as guidelines in the shielding design and SE requirements of electromagnetic pulse protection facilities.

A Study on Etching Patterns of Copper Surface by Chemical Corrosion (동(銅) 표면(表面)의 화학부식(腐蝕)에 의한 식각(蝕刻) 패턴 연구)

  • Kim, Min-Gun;Seo, Bong-Won
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.77-86
    • /
    • 2000
  • In order to observe the pattern forming of copper plate and chemical corrosion reaction, a study on the effect of the process parameters on the formation of micro-pattern by a photochemical etching of copper plate was carried out. The results are as follows : 1) Etching rate increases as the concentration of etchant increases under the regular condition of the temperature by the increasing of diffusion rate to surface. 2) Etching rate increases as the temperature of etchant increases by the fast acting of the material delivery of diffusion to surface under the regular condition of concentration. 3) It was found that etching speed increases as the material delivery of convection rising increased when the aeration speed of etchant increases. This result was from the fact acted by the material delivery of convection rising rather than material delivery of diffusion to the surface.

  • PDF

The Dynamic Characteristics of an Electrostatic Plate Resonator (전전형 평판 공진자의 동특성)

  • 정옥찬;양상식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1084-1088
    • /
    • 1995
  • In this paper, an electrostatic plate resonator with four corrugated bridges and another with four flat ones have been fabricated and tested by the electrostatic actuation. The resonators consist of one rigid plate and four bridges. Boron diffusion process and anisotropic etch process with EPW are mainly used to fabricate the resonators. The dynamic characteristics of the fabricated resonators are obtained by measuring the velocity of the center of the rigid plate using a laser vibrometer. The results show that the deflection of the resonator with the corrugated bridges is larger than the resonator with the flat ones. It has been confirmed that the corrugated structure releases the residual tensile stress in the bridges resulted from the diffusion process.

  • PDF

Time harmonic interactions in fractional thermoelastic diffusive thick circular plate

  • Lata, Parveen
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.39-53
    • /
    • 2019
  • Here in this investigation, a two-dimensional thermoelastic problem of thick circular plate of finite thickness under fractional order theory of thermoelastic diffusion has been considered in frequency domain. The effect of frequency in the axisymmetric thick circular plate has been depicted. The upper and lower surfaces of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is found by using Hankel transform techniques. The analytical expressions of displacements, stresses and chemical potential, temperature change and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect frequency has been shown on the various components.

Oxidation Behavior of Ti Added Alumina Dispersion Strengthening Copper Alloy (티타늄이 첨가된 알루미나 분산강화 동합금의 산화물 형성 거동)

  • Joh, Hongrae;Han, Seung Zeon;Ahn, Jee Hyuk;Lee, Jehyun;Son, Young Guk;Kim, Kwang Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.202-208
    • /
    • 2015
  • Alumina dispersion strengthening copper(ADSC) alloy has great potential for use in many industrial applications such as contact supports, frictional break parts, electrode materials for lead wires, and spot welding with relatively high strength and good conductivity. In this study, we investigated the oxidation behavior of ADSC alloys. These alloys were fabricated in forms of plate and round type samples by surface oxidation reaction using Cu-0.8Al, Cu-0.4Al-0.4Ti, and Cu-0.6Al-0.4Ti(wt%) alloys. The alloys were oxidized at $980^{\circ}C$ for 1 h, 2 h, and 4 h in ambient atmosphere. The microstructure was observed with an optical microscope(OM) and a scanning electron microscope(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS). Characterization of alumina was carried out using a 200 kV field-emission transmission electron microscope(TEM). As a result, various oxides including Ti were formed in the oxidation layer, in addition to ${\gamma}$-alumina. The thickness of the oxidation layer increased with Ti addition to the Cu-Al alloy and with the oxidation time. The corrected diffusion equation for the plate and round type samples showed different oxidation layer thickness under the same conditions. Diffusion length of the round type specimen had a value higher than that of its plate counterpart because the oxygen concentration per unit area of the round type specimen was higher than that of the plate type specimen at the same diffusion depth.