DOI QR코드

DOI QR Code

Oxidation Behavior of Ti Added Alumina Dispersion Strengthening Copper Alloy

티타늄이 첨가된 알루미나 분산강화 동합금의 산화물 형성 거동

  • Joh, Hongrae (Structural Materials Division, Korea Institute of Materials Science) ;
  • Han, Seung Zeon (Structural Materials Division, Korea Institute of Materials Science) ;
  • Ahn, Jee Hyuk (Structural Materials Division, Korea Institute of Materials Science) ;
  • Lee, Jehyun (Department of Materials Science and Engineering, Changwon National University) ;
  • Son, Young Guk (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Kwang Ho (Division of Materials Science and Engineering, Pusan National University)
  • 조홍래 (재료연구소 실용화연구단) ;
  • 한승전 (재료연구소 실용화연구단) ;
  • 안지혁 (재료연구소 실용화연구단) ;
  • 이재현 (창원대학교 나노신소재공학부) ;
  • 손영국 (부산대학교 재료공학과) ;
  • 김광호 (부산대학교 재료공학과)
  • Received : 2015.02.13
  • Accepted : 2015.04.16
  • Published : 2015.04.27

Abstract

Alumina dispersion strengthening copper(ADSC) alloy has great potential for use in many industrial applications such as contact supports, frictional break parts, electrode materials for lead wires, and spot welding with relatively high strength and good conductivity. In this study, we investigated the oxidation behavior of ADSC alloys. These alloys were fabricated in forms of plate and round type samples by surface oxidation reaction using Cu-0.8Al, Cu-0.4Al-0.4Ti, and Cu-0.6Al-0.4Ti(wt%) alloys. The alloys were oxidized at $980^{\circ}C$ for 1 h, 2 h, and 4 h in ambient atmosphere. The microstructure was observed with an optical microscope(OM) and a scanning electron microscope(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS). Characterization of alumina was carried out using a 200 kV field-emission transmission electron microscope(TEM). As a result, various oxides including Ti were formed in the oxidation layer, in addition to ${\gamma}$-alumina. The thickness of the oxidation layer increased with Ti addition to the Cu-Al alloy and with the oxidation time. The corrected diffusion equation for the plate and round type samples showed different oxidation layer thickness under the same conditions. Diffusion length of the round type specimen had a value higher than that of its plate counterpart because the oxygen concentration per unit area of the round type specimen was higher than that of the plate type specimen at the same diffusion depth.

Keywords

References

  1. A. Fathy and O. El-Kady, Mater. Des., 46, 355 (2013). https://doi.org/10.1016/j.matdes.2012.10.042
  2. M. X. Guo, M. P. Wang, K. Shen, L. F. Cao and W. Tan, J. Alloy Comp., 469(1), 488 (2009). https://doi.org/10.1016/j.jallcom.2008.02.006
  3. S. Ziyuan and W. Deqing, Appl. Surf. Sci., 167(1), 107 (2000). https://doi.org/10.1016/S0169-4332(00)00526-2
  4. A. Fathy, F. Shehata, M. Abdelhameed and M. Elmahdy, Mater. Des., 36, 100 (2012). https://doi.org/10.1016/j.matdes.2011.10.021
  5. D. W. Lee and B. K. Kim, Mater. Lett., 58(3), 378 (2004). https://doi.org/10.1016/S0167-577X(03)00505-6
  6. S. B. Chandrasekhar, S. S. Sarma, M. Ramakrishna, P. S. Babu, T. N. Rao and B. P. Kashyap, Mater. Sci. Eng. A, 591, 46 (2014). https://doi.org/10.1016/j.msea.2013.10.074
  7. B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren and J. Su, Mater. Sci. Eng. A, 435, 705 (2006).
  8. J. S. Lee, Y. C. Kim, S. H. Lee, S. H. Ahn and N. J. Kim, Metall. Mater. Trans. A, 35A(2), 493 (2004).
  9. R. Jamaati and M. R. Toroghinejad, Mater. Sci. Eng. A, 527(27), 7430 (2010). https://doi.org/10.1016/j.msea.2010.08.038
  10. T. J. Miller, S. J. Zinkle and B.A. Chin, J. Nucl. Mater., 179(1), 263 (1991). https://doi.org/10.1016/0022-3115(91)90076-J
  11. D. Lua, J. Wang, W. Zeng, Y. Liu, L. Lu and B. Sun, Mater. Sci. Eng. A, 421(1), 254 (2006). https://doi.org/10.1016/j.msea.2006.01.068
  12. G. Zhou and H. Ding, J. Eng. Tribol., 227(9), 1011 (2013).
  13. F. Shehata, A. Fathy, M. Abdelhameed and S. F. Moustafa, Mater. Des., 30(7), 2756 (2009). https://doi.org/10.1016/j.matdes.2008.10.005
  14. C. Kruger and A. Mortensen, Mater. Sci. Eng. A, 585, 396 (2013). https://doi.org/10.1016/j.msea.2013.07.074
  15. J. Xiang, Y. Niu and W. Wu, Intermetallics, 15(5), 635 (2007). https://doi.org/10.1016/j.intermet.2006.10.015
  16. S. J. Hwang, D. Wxler and A. Calka, J. Mater. Sci., 39(14), 4659 (2004). https://doi.org/10.1023/B:JMSC.0000034165.79830.d7
  17. L. Guobin, S. jibing, G. Quanmei and W. Ru, J. Mater. Process. Tech., 170(1), 336 (2005). https://doi.org/10.1016/j.jmatprotec.2005.05.011
  18. S. Z. Han, H. Joh, J. H. Ahn, J. Lee, S. M. Kim, S. H. Lim and Y. G. Son, J. Alloy Comp., 622, 384 (2015). https://doi.org/10.1016/j.jallcom.2014.10.031
  19. K. Song, J. Xing, Q. Dong, P. Liu, B. Tian and X. Cao, Mater. Sci. Eng. A, 380(1), 117 (2004). https://doi.org/10.1016/j.msea.2004.03.042
  20. J. Wu, Y. Zhang, Y. Shen and G. Li, J. Mater. Sci. Technol., 15(5), 444 (1999).
  21. D. Goldberg, Rev. Int. Hautes Temper. Refract,. 5(3), 181 (1968).
  22. D. R. Askeland and P. P. Phule, The Science and Engineering of Materials, 5th ed., p.163, Cengage Learning, Nelson, USA (2006).