대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.736-739
/
2006
While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.
Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
한국멀티미디어학회논문지
/
제15권12호
/
pp.1417-1429
/
2012
In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.
편미분 방정식을 도입하여 새로운 영상처리 기술을 개발하려는 연구가 활발히 진행 중이며, 특히 확산 방정식을 풀어 잡음 제거, 영상 복원, 에지 검출 및 영상 분할 등에 응용할 수 있는 이미지 확산 알고리즘에 관심이 높다. 본 논문에서는 기존의 비등방성 확산 방식이 결국은 커널 크기가 작은 적응 필터링 방식과 동일한 효과를 낸다는 것을 보이고, 확산 과정에서 선형 필터의 단점을 보완할 수 있도록 가중 미디언(WM, Weighted Median) 필터를 적용한 새로운 확산 기법을 제안하였다. 제안된 WM 필터가 비등방성 커널을 갖도록 필터계수에 대응하는 가중치들을 이미지의 국부적인 변화량에 따라 적응적으로 가변할 수 있는 기법을 제안하였다. 뿐만 아니라 반복 과정에서의 확산 속도를 증가할 수 있도록 커널의 크기를 증가시키기 위한 방안도 제시하였다. 실제 영상을 사용한 실험을 통하여 제안된 방식이 기존의 방식에 비해 잡음 제거 (특히 임펄스성 잡음) 특성이나 에지 보존 특성이 더 우수하다는 것을 보였다. 또한 기존의 방식에 비해 확장된 크기를 갖는 커널을 이용함으로써 확산 속도를 높일 수 있다는 것을 보였다.
A nonlinear iterative filtering based on local statistics and anisotropic diffusion is introduced. Local statistics determines the diffusion coefficient at each iteration step. Anisotropic diffusion can be seen as estimates a piecewise smooth image from the noisy input image in the experimental section, our results are shown to suppress noise with preserving the edges. Therefore, it enhances the image and improves performance.
International Journal of Fuzzy Logic and Intelligent Systems
/
제14권2호
/
pp.84-90
/
2014
This paper presents the results of three-dimensional face point cloud smoothing based on a modified anisotropic diffusion method. The focus of this research was to obtain a 3D face point cloud with a smooth texture and number of vertices equal to the number of vertices input during the smoothing process. Different from other methods, such as using a template D face model, modified anisotropic diffusion only uses basic concepts of convolution and filtering which do not require a complex process. In this research, we used 6D point cloud face data where the first 3D point cloud contained data pertaining to noisy x-, y-, and z-coordinate information, and the other 3D point cloud contained data regarding the red, green, and blue pixel layers as an input system. We used vertex selection to modify the original anisotropic diffusion. The results show that our method has improved performance relative to the original anisotropic diffusion method.
본 연구에서는 실명(loss of eyesight)의 원인 질병중 하나인 녹내장의 진행과 진단 등의 의료 정보제공을 목적으로 양방향 곡선 전개 방식을 이용하여 망막 영상에서 시신경 원판(optic disk)의 경계를 검출하는 방법을 제안한다. 정확한 경계 검출의 위하여 텍스처 병합(texture synthesis)기반의 이미지 인페인팅 방법으로 시신경 원판 위를 지나는 혈관을 제거하고 전처리 과정에서 발생하는 잡음제거와 경계의 보존을 위해 비등방성 확산 필터링(anisotropic diffusion filtering)을 행한다. 혈관이 제거된 망막 영상에서 시신경 원판의 경계 검출은 양방향 곡선 방식으로 검출한다. 실험 결과에서, 제안한 알고리즘은 복잡한 망막영상에도 효율적으로 시신경 원판을 검출한다는 것을 보여준다.
본 논문에서는 전처리 과정에서 원영상에 있는 잡음을 제거하기 위해 비등방성 필터를 적용하여 물체의 경계와 모양을 추출하기 위해 Osher와 Sethian이 제안한 레벨셋에 기초한 새로운 기하활성 모델을 제시한다. 처리과정에서 처리시간을 최소화하기 위하여 전체 영상에서가 아닌 경계 근처 이웃 픽셀에서만 계산을 수행하는 협대역 방법을 사용한다. 각 슬라이스들은 비등방 필터링을 통해 잡음을 제거하고 형태 추출된 결과영상을 3차원 데이터 셋으로 구성하여 볼륨 렌더링을 통해 2차원 평면에 잡음이 제거된 깨끗한 영상결과물을 얻을 수 있었다.
최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영상을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다. 본 연구에스는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링(coherence enhancing diffusiion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가긍하고 사용자 수동후 처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.
MPEG-4와 같은 객체 기반 부호화는 멀티미디어 응용을 위한 다양한 내용 기반 기능들을 제공한다. 압축 효율의 향상과 더불어 이러한 기능들이 지원되도록 하기 위해서는 비디오 데이터의 각 프레임은 비디오 객체로 분할되어야 한다. 본 논문에서는 비선형 다중스케일 필터링과 시공간 정보를 사용한 효과적인 비디오 객체 분할 기법을 제안한다. 제안된 방법은 안정화된 역 확산 방정식(Stabilized Inverse Diffusion Equation : SIDE)에 기반한 비선형 다중스케일 필터링을 사용하여 공간적 분할을 수행한다. 또한 구해진 초기 분할된 영역들은 인접 영역 그래프 (Region Adjacency Graph : RAG)를 사용하여 병합된다. 본 논문에서는 통계적 유의성 검사(Statistical significance test)와 시변 메모리(Time-variant memory)를 시간적 분할 방법으로 사용하며 구해진 공간적 분할과 시간적 분할을 결합하여 최종 객체 영역을 효과적으로 분할한다. 본 논문에서 제안된 공간적 분할 방법은 기존의 형태학적 Watershed 알고리즘에 비해 잡음에 강인한 분할 특성을 나타내었으며 기존의 A. Neri의 방법과 비교하였을 때, 최종 분할된 객체 영역의 정확도 비율이 Akiyo는 43%, Claire는 29% 정도 향상됨을 확인할 수 있었다.
Ye, Chul-Soo;Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Kwae-Hi
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.54-58
/
2002
Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is eliminated and edges are preserved after removal of noise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.