Edge preserving method using mean curvature diffusion in aerial imagery
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Abstract

Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead

of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this

paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to

min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is

eliminated and edges are preserved after removal of noise.
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1. Introduction

El-Fallah and Gary E. Ford represented the image as a
surface and proved that setting the inhomogeneous
diffusion coefficient equal to the inverse of the
magnitude of the surface normal results in surface
evolving speed that is proportional to the mean curvature
of the image surface (El-Fallah and Ford, 1997). This
model has the advantage of having the mean curvature
diffusion (MCD) render invariant magnitude, thereby
preserving structure and locality. By coupling the
min/max flow to the surface diffusion model controlled
by the surface’s normal magnitude and smoothness,
noise is eliminated and thin edges are preserved more
efficiently. In this paper, we propose methods of
automatic parameter selection and implementation for

the MCD model coupled to min/max flow.

2. MCD model coupled to min/max Flow
Let us consider the image as a 3-D surface, that is
z=1(x,y) . The following function
g(x,y,2)=z-1(x,y) M
characterizes the image, while the surface S is defined
implicitly by
S:g(x,y,2)=0. 2
The gradient 1Vg! represents the nonvanishing

normal vector field over the entire surface (El-Fallah and

Ford, 1994) having the magnitude

Vg k=14 12412 = eI VI, 3)
The diffusion of g is modeled by
—=V-(CVg). )]

In the MCD model coupled to min/max flow, the



diffusion coefficient is the inverse of the surface gradient
magnitude and the quadratic variation ( given by
equation (6)

1 1

_ _ (5)
Vgl J1+A2(t)(l VIF +Q)

where A is a function of the change in the surface area.
Q=I5 +2% +1}. ©6)

Note that the quadratic variation of the surface is in
general large at the thin edges, hence taking the values of
function Q of I into consideration will help reduce
fast diffusion at the thin edges.

By combining the min/max flow proposed by Malladi
and Sethian (Malladi and Sethian, 1996), we modified

the MCD model with the diffusion coefficient as follows:

; 2H FIVII<T,
-af—= F(H)={max (2H,0) if Average (x,y) < Ty
min (2H ,0) otherwise

} otherwise
)
where T, is a threshold based on the local gradient
magnitude, Average(x,y) is the average of all pixel
grey values in a small window centered at (x,y) and
T, is the average value of the intensity obtained in the

direction perpendicular to the gradient (Ye and Lee,

2001).

3. Parameter selection

Two parameters are required to be fixed, namely 7
and iteration number n. The parameter 7; allows to
control the amount of smoothing effect and is fixed using
the noise estimator described by Canny (Canny, 1986),
i.e., a histogram of the absolute values of the gradient
throughout the image is computed and 7 is set equal
to the 90% value of its integral.

To determine iteration number automatically, we make
use of an assumption: a fraction of the image is

composed of homogeneous regions. The image is

subdivided into nonoverlapping blocks of the same size.
We define a local homogeneity measure as the average of
gradient magnitudes in each block and then measured it
in each block. The blocks are sorted in order of
decreasing homogeneity. We use only a fraction of the
blocks with high homogeneity measure to represent the
homogeneous regions of the image.

The noise in homogeneous regions will be reduced
after some iterations and diffusion coefficient C
gradually reaches 1. Denote by N, the number of all
pixels in homogeneous regions in the image. We use
diffusion coefficient C to test whether the
neighbourhood of a pixel is smooth enough. At a pixel P,
if C <7, then the neighbourhood is considered smooth;
otherwise not smooth enough. The threshold T is
obtained using the gradient and the quadratic variation. If
the difference between the intensity of center pixel and
that of its neighbourhood pixels in 3X3 image region is
2, we can compute the threshold T,; as follows:

IVIP=1}+1}=2%+2" =8,

Q=1}+217 +1} =(-4 +2x0+(-4)* =32,

1 1 1 1
Vel JiriviP+g J1+8+32 Jal.
The ratio r(n)=N,(n)/N,;(n), where N, is the

Ts =

number of pixels that meet C <Tg, gradually increases
with iteration number. If the change in slope of r(n),
D(n) given by equation (8), is small enough, diffusion

stops.
D(n) =) r(n)—r(n—k)I=Ir(n—k)—r(n-2k)| (8)

4. Implementation
Mean curvature diffusion mode] in the case of 2D

discrete signal is modeled by the equation



oI (x, y,t) _9 9
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L9

{c(x, y,t) J 1(1?, )’J)}
ay

where I{x,y,t) is the image being diffused. A Taylor

series expansion of I around f=1fgis

+A  (10)

I(x, y.tg+ A2y = 1(x, y,to)+At—a—l——(—)ﬁcf;—tyf—t-‘lZ

Approximating this expansion by ignoring the higher
order terms and substituting for the derivative using (9),
we obtain

I(X, y,to +At)= I(X., )’,to)

+AI{§ [c(x y,t) I(x y,t)} J [c(x y,t) [(x y,t):!}
dy

1y
Consider the center pixel (x;,y;) and the four adjacent
pixels  (x,%), (ony), (.ym) and (x, ¥)
Finally we obtain
1
H{x;, p;,tp + A) = I(xi,yi,to)——z—ml(xi,y,-,tu)-

{eCuin, isto) + €(xi, ¥;.,00) + €(Xi, Yy ato) + e, Yite)}

1
+‘2‘A’{C(xi~b Vi to M (X, ¥iato) + (X0, Yo To M (X1, Y0 to)

+ (X, ¥ioo b O it ) + €0t Yisrs 1) (X Yiny ”0)}
(12)

From equation (12) the filter kernel M ;{’, y, 0 be used at

time t is
0 ¢y (ty) 0
P.Y, 2 3
Mx(.-’qy ) 3(t) “'A’;—;Ci(’o) gy | (13)
0 cq(tg) 0
where

¢; =¢(X;, Yipoto)s €2 =C(Xips ¥iatp)s €3 =€(X;, Yiyslp)s

€4 =Xy, ¥islg)-

3. Experimental results
The mean curvature diffusion algorithm was applied to

a noisy edge image. The noisy edge in Fig. 1 is a rough

surface of high mean curvature, The mean curvature
diffusion algorithm reduces mean curvature on small

patches by spatial averaging.
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Fig. 1. (a) 3-d display of noisy edge image (b) the result

of applying mean curvature diffusion to the noisy edge

image.

To show the performance of the proposed algorithm
we chose the thin step edge image (Fig. 2). We added 8%
pniform noise to the original image. Fig. 2 compares the
results of filtering using the proposed method,
anisotropic diffusion proposed by Perona and Malik
(Perona and Malik, 1990), and conventional mean
curvature diffusion. We see that using the proposed

method, thin edges were well preserved. Table 1 shows



the PSNR comparison of all the methods tested. This

clearly indicates that the proposed method is superior to

other algorithms in preserving thin edges.

© (d)

Fig. 2. (a) Original thin edge image (b) noisy image with
uniform noise of 8% (c) anisotropic diffusion proposed
by Perona and Malik (d) conventional mean curvature

diffusion (e) proposed method.

Table 1. Quantitative performance of each algorithm

for thin edge image.

Algorithm PSNR
Perona-Malik method 23.7
Conventional mean curvature diffusion 16.8
Proposed method 243

We applied the proposed algorithm to aerial image as
shown in Fig. 3. We see that using the proposed method,
edges are well preserved and the small variations in
homogeneous regions are well removed. The image was
subdivided into nonoverlapping blocks of the same size
8x8 pixels. We assumed 40 percent of the image was

composed of homogeneous regions. We stopped the
diffusion when D(n) <0.0001.

Fig. 4 and Fig. 5 show the edgeness threshold T

curve and the curve of r(n) for aerial image in Fig. 3.

After some iterations, noises were removed and edgeness

threshold 7T; and the curve r(n) reached a constant

value.

(®)
Fig. 3. (a) Original aerial image (b) the result of applying

mean curvature diffusion to the original image.
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Fig. 4. Edgeness threshold T, curve for aerial image in

Fig. 3.
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Fig. 5. The curve of r(n) as a functionof n.

6. Conclusions

By coupling the min/max flow to the surface diffusion
model controlled by the normal surface’s magnitude and
smoothness, noise is eliminated and thin edges are
preserved more efficiently. In this paper, we propose
methods of automatic parameter selection and
implementation for the MCD model coupled to min/max
flow. To determine iteration number automatically, we
defined a local homogeneity measure as the average of
gradient magnitudes in each block and used only a
fraction of the blocks with high homogeneity measure.

We used diffusion coefficient to test whether the

neighbourhood of a pixel is smooth enough. The
algorithm has been applied to high resolution aerial
images and the results show that noise is eliminated and

edges are preserved after removal of noise.
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