• Title/Summary/Keyword: Diffusion & transfer coefficient

Search Result 125, Processing Time 0.027 seconds

Removal of Phenol by Granular Activated Carbon from Aqueous Solution in Fixed-Bed Adsorption Column : Parameter Sensitivity Analysis (충진층 흡착관 내에서 입상활성탄에 의한 페놀 제거 : 매개변수 감응도 해석)

  • 윤영삼;황종연;권성헌;김인실;박판욱
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.773-782
    • /
    • 1998
  • The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixed-bed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.

  • PDF

A Study on the Prediction of Hydrogen Vehicle by the Thermodynamic Properties

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • Hydrogen has long been recognized as a fuel having some unique and highly desirable properties, for application as a fuel in engines. Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient, in comparison to those of the other fuels. Such differences together with its extremely low density and low luminosity help to give hydrogen its unique diffusive and heat transfer characteristics. The thermodynamic and heat transfer characteristics of hydrogen tend to produce high compression temperatures that contribute to improvements in engine efficiency and lean mixture operation.

Enhanced Charge Transfer Through Polypyrrole Electropolymerized on Poly(acrylonitrile-co-butadiene)/Pt Electrodes

  • Chae, Won-Seok;Moon, Jung-Nim;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.603-610
    • /
    • 1995
  • The charge transfer rate in polypyrrole(PPy) electropolymerized within poly(acrylonitrile-co-butadiene)(PAB) was compared with that in PPy deposited Pt electrodes by using cyclic voltammetry, chronoamperometry, and chronopotentiometry in acetonitrile. For both electrodes anodic and cathodic peak currents were proportional to scan rates below 100 mV/sec, but to square root of scan rates beyond 200 mV/sec. The apparent diffusion coefficient of $ClO{_4}^-$ in the PPy/PAB composite is estimated to be 1.6 times larger than that in PPy. The PPy films composited within PAB layer showed higher anodic and cathodic currents and possessed faster charging-discharging process and larger capacity.

  • PDF

Electrochemical Behaviour of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine in Aprotic Media (비양자성 매개물에서 (2, 4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine의 전기화학적 반응)

  • Kumari, Mamta;Sharma, D.K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • The electrochemical reduction of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine was investigated in 0.1 M tetrabutylammoniumbromide in N,N-dimethylformamide at glassy carbon electrode (GCE) using the technique of cyclic voltammetry at the room temperature (290 K). The reduction of imines occurs in two successive steps, involving one electron in each. In this medium the first peak was observed at about -0.793 V (vs Ag/$Ag^+$) at the glassy carbon electrode surface, which is more stable and well defined as compared to the second peak. The diffusion coefficient ($D_0$) of imine in the investigated solvent media has been calculated using the modified Randles-Sevcik equation. The electron transfer coefficient ($\alpha$) of the reactant species has also been calculated.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Analysis of the Behavior of Tubular-Type Equipment for Nuclear Waste Treatment : Sensitivities of the Parameters Affecting Mass Transfer Yield (방사성폐기물의 화학처리공정에 사용되는 유동관식 장치의 해석 : 물질전달 수율에 미치는 매개변수들의 민감도)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipments, as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities. affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the backmixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface, and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate.

  • PDF

Measurement of mass Transfer Coefficients for Adsorptive Bulk Gas Separation with Velocity Variations (기체속도가 변하는 벌크기체의 흡착공정에서 물질전달계수의 측정)

  • Min, Jun-Ho;Choi, Min-Ho;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.310-318
    • /
    • 1999
  • The concentration breakthrough curves were examined to predict mass transfer coefficients of nitrogen and oxygen in adsorption column for design data of PSA process. Experimental breakthrough curves for bulk gas flow were compared with theoretical simulation results. For quantitative analysis of the adsorption, coupled Langmuir isotherm was considered and LDF model was used to describe the mass transfer effect. In the experimental and theoretical results, it was found that mass transfer coefficient was not affected by flow rate but strongly affected by pressure. As a result of this tendency, mass transfer resistance in this system was proved to belong to the macropore diffusion controlling region and the mass transfer coefficients could be expressed by exponential functions of pressure change. The mass transfer coefficients for one component, nitrogen or oxygen, were successfully applied to breakthrough curves for bulk mixed gases. The experimental curves were reasonably in consistent with the theoretical curves and the error time was less than 5 percent.

  • PDF

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Diffusion-weighted and Dynamic Contrast-enhanced MRI of Metastatic Bone Tumors: Correlation of the Apparent Diffusion Coefficient, $K^{trans}$ and $v_e$ values (골전이암의 확산강조영상과 역동적 조영증강 자기공명영상: 겉보기 확산계수, $K^{trans}$$v_e$ 값들의 상관관계)

  • Koo, Ji Hyun;Yoon, Young Cheol;Kim, Jae Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • Purpose : To investigate whether quantitative parameters derived from Diffusion-weighted magnetic resonance imaging (DW-MRI) correlate with those of Dynamic contrast-enhanced MRI (DCE-MRI). Materials and Methods: Thirteen patients with pathologically or clinically proven bony metastasis who had undergone MRI prior to treatment were included. The voxel size was $1.367{\times}1.367{\times}5mm$. A dominant tumor was selected and the apparent diffusion coefficient (ADC) value and DCE-MRI parameters were obtained by matching voxels. DCE-MRI data were analyzed yielding estimates of $K^{trans}$ (volume transfer constant) and $v_e$. (extravascular extracellular volume fraction). Statistical analysis of ADC, $K^{trans}$, and $v_e$ value was conducted using Pearson correlation analyses. Results: Fifteen lesions in pelvic bones were evaluated. Of these, 11 showed a statistically significant correlation (P<0.05) between ADC and $K^{trans}$. The ADC and $K^{trans}$ were inversely related in 7 lesions and positively related in 4 lesions. This did not depend on the primary cancer or site of metastasis. The ADC and $v_e$ of 9 lesions correlated significantly. Of these, 4 lesions were inversely related and 5 lesions were positively related. Conclusion: Unlike our theoretic hypothesis, there was no consistent correlation between ADC values and $K^{trans}$ or between ADC values and $v_e$ in metastatic bone tumors.