Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.1.050

Electrochemical Behaviour of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine in Aprotic Media  

Kumari, Mamta (Department of Chemistry, University of Rajasthan)
Sharma, D.K. (Department of Chemistry, University of Rajasthan)
Publication Information
Abstract
The electrochemical reduction of (2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine was investigated in 0.1 M tetrabutylammoniumbromide in N,N-dimethylformamide at glassy carbon electrode (GCE) using the technique of cyclic voltammetry at the room temperature (290 K). The reduction of imines occurs in two successive steps, involving one electron in each. In this medium the first peak was observed at about -0.793 V (vs Ag/$Ag^+$) at the glassy carbon electrode surface, which is more stable and well defined as compared to the second peak. The diffusion coefficient ($D_0$) of imine in the investigated solvent media has been calculated using the modified Randles-Sevcik equation. The electron transfer coefficient ($\alpha$) of the reactant species has also been calculated.
Keywords
(2,4-difluoro-phenyl)-(2-phenyl-1H-quinolin-4-ylidene)-amine; Glassy carbon electrode (GCE); Diffusion coefficient ($D_0$); Randles-Sevcik equation;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Barnes, J. H.; Triebe, F. M.; Hawley, M. D. J. Electroanal. Chem. 1982, 139, 395.   DOI
2 Zhan, S.; Hawley, M. D. J. Electroanal. Chem 1991, 319, 275.   DOI
3 Fry, A. J.; Reed, R. G. J. Am. Chem. Soc. 1969, 91, 648.   DOI
4 Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.   DOI
5 Brett, C. M. A.; Oliveira Brett, A. M. Electrochemistry: Principles, methods and applications; UK University Press: UK, Oxford, 1993.
6 Saied, T.; Benkhoud, M. L.; Boujlel, K. Synth. Commun. 2002, 32(2), 225.   DOI
7 Boteva, A. A.; Krasnykh, O. P. Chem. Hetero. Comp. 2009, 45, 757.   DOI
8 Luo, F. T.; Ravi, V. K.; Xue, C. Tetrahedron 2006, 62, 9365.   DOI
9 Nicholson, R. S. Anal. Chem. 1965, 37, 1351.   DOI
10 Peover, M. J.; Bard, A. J. Electroanalytical chemistry; Marcel Dekker: New York, 1967.
11 Fry, A. J.; Reed, R. G. J. Am. Chem. Soc., 1972, 94, 8475.   DOI
12 Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley & Sons: New York, 2001.
13 Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Electrochem. Commun. 2006, 8, 65.   DOI
14 Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Talanta. 2007, 72, 976.   DOI
15 Baymak, M. S.; Celik, H.; Lund, H.; Zuman, P. J. Electroanal. Chem. 2006, 589, 7.   DOI
16 Lund, H.; Baizer, M. M. Organic Electrochemistry, 3rd ed., New York: Marcel Dekker, 1991.
17 Lund, H.; Simonet, J. Bull. Soc. Chim. Fr. 1973, 1843.
18 Andrieux, C. P.; Saveant, J. M. Electroanal. Chem. Interfacial Electrochem 1971, 33, 453.   DOI
19 Baymak, M. S.; Celik, H.; Lund, H.; Zuman, P. J. Electroanal. Chem. 2005, 581, 284.   DOI
20 Baymak, M. S.; Celik, H.; Ludvik, J.; Lund, H.; Zuman, P. Tetrahedron Lett. 2004, 45, 5113.   DOI
21 Scott, J. M..; Jura, W. H. Can. J. Chem 1967, 45, 2375.   DOI