• Title/Summary/Keyword: Diffractive

Search Result 128, Processing Time 0.039 seconds

Opical design of small and light weight Eye Glass Display (소형, 경량의 Eye Glass Display 광학계 설계)

  • Park, Yeong-Su;Seok, Jong-Min;Kim, Hwi-Un;Kim, Tae-Ha;Park, Gwang-Beom;Mun, Hyeon-Chan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.34-35
    • /
    • 2005
  • Eye Glass Display(EGD)에 사용되는 광학계를 비구면과 Diffractive Optical Element(DOC)를 이용한 플라스틱 렌즈로 구성하여 소형, 경량으로 제작이 가능하게 설계하였다. 비구면과 DOE를 최적화한 1매의 렌즈로 광학계를 구성하여 display의 길이를 줄이고, 왜곡과 색수차를 보정하며 해상력을 향상 시켰다. 더불어, 광학계는 안경 착용자가 불편하지 않을 정도의 eye relief와 눈의 움직임에 여유를 가질 수 있는 크기의 eye motion box(exit pupil)를 가진다.

  • PDF

Athermal and Achromatic Design for a Night Vision Camera Using Tolerable Housing Boundary on an Expanded Athermal Glass Map

  • Ahn, Byoung-In;Kim, Yeong-Sik;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • We propose a new graphical method for selecting a pair of optical and housing materials to simultaneously athermalize and achromatize an LWIR optical system. To have a much better opportunity to select the IR glasses and housing materials, an athermal glass map is expanded by introducing the DOE with negative chromatic power. Additionally, from the depth of focus in an LWIR optical system, the tolerable housing boundary is provided to realize an athermal and achromatic system even for not readily available housing material. Thus, we can effectively determine a pair of optical and housing materials by reducing the thermal shift to be less than the depth of focus. By applying this method to design a night vision camera lens, the chromatic and thermal defocuses are reduced to less than the depth of focus, over the specified waveband and temperature ranges.

Tilt Aberration Compensation Using Interference Patterns in Digital Holography

  • Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Shin, Sang-Hoon;Jung, Won-Gi
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.451-455
    • /
    • 2009
  • We present a numerical procedure that compensates for tilt phase aberration in in-line digital holography by computing the period of interference patterns in the reconstructed phase image. This method enables the reconstruction of correct and accurate phase information, even if strong tilt aberrations exist. Example applications of tilt aberration compensation are shown for a tilted plate, a micro-lens array, and a thin film transistor. This method is convenient because it uses only one hologram and no hardware to minimize the tilt aberration.

Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids

  • Lee, Hong Seok;Shin, Sanghoon;Lee, Heonjoo;Yu, Younghun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.495-499
    • /
    • 2014
  • In this paper, a method is proposed for simultaneously measuring the front and back surface profiles of transparent micro-optical components. The proposed method combines a dual-wavelength digital holographic microscope with liquids to record holograms at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back sides of the sample. A theoretical model is proposed to determine the surface information, and imaging of an achromatic lens is demonstrated experimentally. Unlike conventional interferometry, our proposed method supports nondestructive measurement and direct observation of both front and back profiles of micro-optical elements.

Design of optimal multiplexed filter and an analysis on the similar discrimination for music notatins recognition (음악기보 인식을 위한 다중필터의 설계 및 유사판별 성능분석)

  • Yeun, Jin-Seon;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.65-74
    • /
    • 1997
  • In this paper, SA-multiplexed filter is designed using SA (simulated ananealing) to recognize music notation patterns varying in size, shape, position and having considerably many similar shapes for optical pattern recognition system. This filter has correlation resutls at wanted location and can identify same class, classify similar class for scale-varianted or rotation-varianted music notation patterns havng learning process. Also, the optimum filter is oriented to analyze on the similar discrimination at acquired position using SA and enhances optical diffractive efficiency as well as peak beam intensity. Compared with POF *(phase only filter), cosine-BPOF(cosine-binary phase only filter), that has excellent discrimination capability even if the different rate is 0.1% quantitatively.

  • PDF

Correction of image distortion of CGH with a large diffraction angle (큰 회절각을 가진 CGH의 위치에 대한 오차의 보정)

  • Lee, Jai-Cheol;Oh, Yong-Ho;Go, Chun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.128-132
    • /
    • 2005
  • Most CGH programs use a model equation based on the diffraction angle. Therefore, if the diffraction angle is large enough, the image on a flat screen is distorted. To correct the distortion, we created the model equation from diffraction theory and verified it through experiment. We also suggest a design method that compensates for the distortion without changing the CGH program.

A Study on thin relief phase holographic grating using photoresist. (Photoresist을 이용한 Thin relief 위상형 홀로그램 격자에 관한 연구.)

  • Shin, K.Y.;Choi, D.H.;Kim, N.;Park, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.47-50
    • /
    • 1987
  • There are various holographic recording materials, such as Dichromated Gelatin, Silver Halide, Thermoplastic, Photoresist. In this paper especially, we used Photoresist to make the phase holographic grating. Deep-groove diffractive grating formed in relatively thin holographic recording material is to express high diffraction efficiency. Phase holographic grating recorded In photoresist can be used very practical because it has the high diffraction efficiency, and it is possible to make a replication easily. So, it has the merit in recording the optical holographic grating than any other materials.

  • PDF

Modified Illumination by Binary Phase Diffractive Patterns on the Backside of a Photomask (마스크 뒷면에 2 위상 회절 격자를 구현한 변형 조명 방법)

  • 이재철;오용호;고춘수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.697-700
    • /
    • 2004
  • We propose a method that realizes the modified illumination by implementing a binary phase grating at the backside of a photomask. By modeling the relationship between the shape of a grating on the photomask and the light intensity at the pupil plane, we developed a program named MIDAS that finds the optimum grating pattern with a stochastic approach. After applying the program to several examples, we found that the program finds the grating pattern for the modified illumination that we want. By applying the grating at the backside of a photomask, the light efficiency of modified illumination may be improved.

Phase Shift Analysis of 6Li Elastic Scattering on 12C and 28Si at Elab = 318 MeV

  • Kim, Yong Joo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1331-1337
    • /
    • 2018
  • We present a three-parameter phase shift model whose form is the same as that of Coulombmodified Glauber model obtained from Gaussian nuclear densities. This model is applied to the $^6Li+^{12}C$ and the $^6Li+^{28}Si$ elastic scatterings at $E_{lab}=318MeV$. The calculated differential cross sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory structures observed at forward angles can be explained as being due to the strong interference between the near-side and the far-side scattering amplitudes. The optical potentials for two systems are predicted by using the method of inversion. The calculated inversion potentials are found to be in fairly good agreements with the results determined from the optical model analysis in the surface regions around the strong absorption radius. We also investigate the effects of parameters in the three-parameter phase shift model on the elastic scattering cross sections.

Two-dimensional Laser Drilling Using the Superposition of Orthogonally Polarized Images from Two Computer-generated Holograms

  • Lee, Hwihyeong;Cha, Seongwoo;Ahn, Hee Kyung;Kong, Hong Jin
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.451-457
    • /
    • 2019
  • Laser processing using holograms can greatly improve processing speed, by spatially distributing the laser energy on the target material. However, it is difficult to reconstruct an image with arrays of closely spaced spots for laser processing, because the specklelike interference pattern prevents the spots from getting close to each other. To resolve this problem, a line target was divided in two, reconstructed with orthogonally polarized beams, and then superposed. Their optical reconstruction was performed by computer-generated holograms and a pulsed laser. With this method, we performed two-dimensional (2D) laser drilling of polyimide film, with a kerf width of $20{\mu}m$ and a total processing length of 20 mm.