• Title/Summary/Keyword: Diffraction effects

Search Result 903, Processing Time 0.024 seconds

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy (Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향)

  • Song, Da Hye;Kim, Yeong Gyeom;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.

Preparation and Characteristics of Visible-Light-Active $TiO_2-_xN_x$ Nanoparticles for Photocatalytic Activities (가시광 활성을 갖는 광촉매용 $TiO_2-_xN_x$ 나노입자의 제조 및 특성)

  • Yun, Tae-Kwan;Bae, Jae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1019-1024
    • /
    • 2009
  • Visible-light-active $TiO_2-_xN_x$ nanoparticles with a homogeneous anatase crystalline structure were successfully prepared through a hydrolysis of $TiCl_4$ with ammonia solution. The samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (DRS) techniques. The light absorption onset shifted from 390 nm on pure $TiO_2$ to the visible region at 530 nm on nitrogen-doped $TiO_2$. A clear decrease in the band gap was deduced from the DRS results. The photocatalytic activity was evaluated from the photodegradation of congo red solution under visible light irradiation. The photocatalyst showed the highest photocatalytic activity at an optimal value of nitrogen doping concentration. This was suggested that the nitrogen doping should have an important effects on the improvement of photocatalytic activity.

Effects of Heat Treatment Condition on the Mechanical Properties in Fe-0.4%C-2.3%Si Steel (Fe-0.4C-2.3Si강의 기계적 성질에 미치는 오스템퍼링 열처리 조건의 영향)

  • Son, Je-Young;Song, June-Hwan;Kim, Ji-Hun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.104-108
    • /
    • 2012
  • The effect of heat treatment on mechanical properties of 0.4C-2.3Si(wt%) steel with bainitic ferrite matrix were investigated. This steel has been synthesized intergrating concepts from TRIP(Transformation Induced Plasticity) steel & Austempered Ductile Cast Iron(ADI) technology. The low alloy medium carbon (0.4 %C) steel with high silicon (2.3 %Si) was initially annealed for 60 min at $800^{\circ}C$, $820^{\circ}C$ and $840^{\circ}C$ respectively in the intercritical region and then subsequently austempered at various temperatures at $260^{\circ}C$, $320^{\circ}C$ and $380^{\circ}C$ for 30 min in a salt bath. The mechanical properties were measured by using a tensile test. A detailed study of the microstructure of this steel after heat treatment was carried out by means of electron back scattering diffraction (EBSD) technic. In this study, a new low alloy steel with high strength (780~1,050MPa) and exceptionally high ductility (20~40%) was obtained.

Effects of the Transition Metal Oxides Substituted for Mg on the Electrical Conductivity of La0.8Sr0.2Ga0.8Mg0.2O3-δ -based Electrolytes (Mg에 치환된 전이금속이 La0.8Sr0.2Ga0.8Mg0.2O3-δ 고체전해질의 전기전도도에 미치는 영향)

  • Park, Sang-Hyoun;Yoo, Kwang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/-based solid electrolytes in which Mg site was partially substituted by Fe, Co or Ni (0.05, 0.1, 0.15 at.%) were fabricated by conventional solid-state reaction and their sintered densities were above 94% of theoretical density. X-ray diffraction analysis and microstructure observation for the sintered specimens were performed. The ac complex impedance were measured at 400。C to l000。C in air and fitted with a Solatron ZView program. The electrical conductivity of La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/-based solid electrolytes substituted by Fe, Co or Ni was higher than that of pure La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/. The electrical conductivity of La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.05/Ni/sub 0.15/O/sub 3-δ/ electrolyte was 3.4×10/sup -2/ Scm/sup -1/ at 800。C and the highest value of the whole electrolytes.

Effects of Substrate and Annealing Temperatures on the Properties of SrWO4:Dy3+, Eu3+ Phosphor Thin Films (기판 및 열처리 온도에 따른 SrWO4:Dy3+, Eu3+ 형광체 박막의 특성)

  • Kim, Jungyun;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.577-582
    • /
    • 2016
  • $Dy^{3+}$ and $Eu^{3+}$-codoped $SrWO_4$ phosphor thin films were deposited on sapphire substrates by radio frequency magnetron sputtering by changing the growth and thermal annealing temperatures. The results show that the structural and optical properties of the phosphor thin films depended on the growth and thermal annealing temperatures. All the phosphor thin films, irrespective of the growth or the thermal annealing temperatures, exhibited tetragonal structures with a dominant (112) diffraction peak. The thin films deposited at a growth temperature of $100^{\circ}C$ and a thermal annealing temperature of $650^{\circ}C$ showed average transmittances of 87.5% and 88.4% in the wavelength range of 500-1100 nm and band gap energy values of 4.00 and 4.20 eV, respectively. The excitation spectra of the phosphor thin films showed a broad charge transfer band that peaked at 234 nm, which is in the range of 200-270 nm. The emission spectra under ultraviolet excitation at 234 nm showed an intense emission peak at 572 nm and several weaker bands at 479, 612, 660, and 758 nm. These results suggest that the $SrWO_4$: $Dy^{3+}$, $Eu^{3+}$ thin films can be used as white light emitting materials suitable for applications in display and solid-state lighting.

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts (TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율)

  • Lee, Jong-Ho;Heo, Sujeong;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.790-797
    • /
    • 2019
  • To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device (초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발)

  • Bae H.;Lim J.;Jeong K.;Han J.;Yoo J.;Park N.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

$Fe_2O_3$ Aggregation and Sintering of Ba-Ferrite ($Fe_2O_3$ 응집상태와 Ba-Ferrite의 소결성)

  • Hyo-Duk Nam;Sang-Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.318-324
    • /
    • 1981
  • The effects of$ Fe_2O_3$ aggregation on the sintering of Ba-ferrite (BaFe$_{12}O_{19}$) were studied. $BaCO_3-Fe_2O_3$ mixtures were prepared by partial precipitation mixing and ball-mill mixing method using two different $Fe_2O_3 $powders. Techniques employed were TG, XRD and SEM. X-ray diffraction analysis showed that the over all reaction basically consists of the two consecutive reaction; $BaCO_3 + 6Fe_2O_3\;{\longrightarrow}\;BaFe_2O_3 + 5Fe_2O_3 + CO_2{\uparrow}\;BaFe_2O_4 + 5Fe_2O_3 \;{\longrightarrow}\;BaFe_{12}O_{19}$ It is also shown that the aggregation state of $Fe_2O_3$ raw materials, as well as the mixing method, has a remarkable effect on solid state reaction between $BaCO_3\;and\;Fe_2O_3$.

  • PDF

Effect of Non-ionic Igepal CO-520 in Sonochemical Synthesis of Monodisperse Fe3O4 Nanoparticles

  • Son, Vo Thanh;Phong, Le Van;Islam, Nazrul Md.;Hung, Tran Quang;Kim, Sa-Rah;Jeong, Jun-Ho;Kim, Cheol-Gi;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.112-115
    • /
    • 2010
  • We have investigated a surfactant-assisted sonochemical approach to produce monodisperse $Fe_3O_4$ nanoparticles (NPs). The non-ionic surfactant Igepal CO-520 (Poly(oxyethylene)(5) nonylphenyl ether) has been used for the preparation of NPs and the effects on the NP size, size distribution, and magnetic properties have been studied. The $Fe_3O_4$ NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results reveal that the NPs prepared by a Igepal CO-520-assisted sonochemical method exhibit a narrow range of size distributions and a high monodispersity compared to the NPs from the conventional sonochemical method. The analysis of NPs prepared in the presence of the surfactant suggested that it could be used not only as a protector to prevent the oxidation of Fe (II), but also as a controller to vary the size of the NPs.

Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion

  • Shen, Qiuwan;Zheng, Ying;Luo, Cong;Zheng, Chuguang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1613-1618
    • /
    • 2014
  • Perovskite-type oxides are promising oxygen carriers in producing oxygen-enriched $CO_2$ gas stream for oxyfuel combustion. In this study, a new series of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2, 0.4, 0.6, 0.8) was prepared and used to produce $O_2/CO_2$ mixture gas. The phase, crystal structure, and morphological properties of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ were investigated through X-ray diffraction, specific surface area measurements, and environmental scanning electron microscopy. The oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ was studied in a fixed-bed reactor system. Results showed that the different x values of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ have no obvious effects on crystalline structure. However, the oxygen desorption performance of $SrCo_{1-x}Fe_xO_{3-{\delta}}$ is improved by Co doping. Moreover, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ synthesized via a new EDTA method has a larger BET surface area ($40.396m^2/g$), smaller particle size (48.3 nm), and better oxygen production performance compared with that synthesized through a liquid citrate method.