DOI QR코드

DOI QR Code

Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy

  • 송다혜 (공주대학교 신소재공학부) ;
  • 김영겸 (공주대학교 신소재공학부) ;
  • 이진규 (공주대학교 신소재공학부)
  • Song, Da Hye (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Yeong Gyeom (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Jin Kyu (Division of Advanced Materials Engineering, Kongju National University)
  • 투고 : 2020.02.17
  • 심사 : 2020.02.22
  • 발행 : 2020.02.28

초록

In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.

키워드

참고문헌

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.- T. Shun, C.-H. Tsau and S.-Y. Chang: Adv. Eng. Mater., 6 (2004) 299. https://doi.org/10.1002/adem.200300567
  2. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu: Prog. Mater. Sci., 61 (2014) 1. https://doi.org/10.1016/j.pmatsci.2013.10.001
  3. M.-H. Tsai and J.-W. Yeh: Mater. Res. Lett., 2 (2014) 107. https://doi.org/10.1080/21663831.2014.912690
  4. M. G. Poletti, G. Fiore, F. Gili, D. Mangherini and L. Battezzati: Mater. Des., 115 (2017) 247. https://doi.org/10.1016/j.matdes.2016.11.027
  5. J. I. Lee, H. S. Oh, J. H. Kim and E. S. Park: Korean J. Met. Mater., 55 (2017) 1. https://doi.org/10.3365/KJMM.2017.55.1.1
  6. S. I. Hong, J. Moon, S. K. Hong and H. S. Kim: Mater. Sci. Eng. A, 682 (2017) 569. https://doi.org/10.1016/j.msea.2016.11.078
  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie: Science, 345 (2014) 1153. https://doi.org/10.1126/science.1254581
  8. Y. S. Na and K. R. Lim: Trends Met. Mater. Eng., 30 (2017) 50.
  9. O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle: Intermetallics, 19 (2011) 698. https://doi.org/10.1016/j.intermet.2011.01.004
  10. O. N. Senkov, S. V. Senkova and C. Woodward: Acta Mater., 68 (2014) 214. https://doi.org/10.1016/j.actamat.2014.01.029
  11. O. N. Senkov, D. B. Miracle, K. J. Chaput and J.-P. Couzinie: J. Mater. Res., 33 (2018) 3092. https://doi.org/10.1557/jmr.2018.153
  12. S. Praveen and H. S. Kim: Adv. Eng. Mater., 20 (2018) 1.
  13. W. Guo, B. Liu, Y. Liu, T. Li, A. Fu, Q. Fang and Y. Nie: J. Alloys Compd., 776 (2019) 428. https://doi.org/10.1016/j.jallcom.2018.10.230
  14. K. S. Kormout, R. Pippan and A. Bachmaier: Adv. Eng. Mater., 19 (2017) 1.
  15. D. Raabe, S. Ohsaki and K. Hono: Acta Mater., 57 (2009) 5254. https://doi.org/10.1016/j.actamat.2009.07.028
  16. Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh and S.-K. Chen: J. Alloys Compd., 481 (2009) 768. https://doi.org/10.1016/j.jallcom.2009.03.087
  17. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova and J. Materjicek: Mater. Sci. Eng. A, 689 (2017) 252. https://doi.org/10.1016/j.msea.2017.02.068