Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.1.52

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy  

Song, Da Hye (Division of Advanced Materials Engineering, Kongju National University)
Kim, Yeong Gyeom (Division of Advanced Materials Engineering, Kongju National University)
Lee, Jin Kyu (Division of Advanced Materials Engineering, Kongju National University)
Publication Information
Journal of Powder Materials / v.27, no.1, 2020 , pp. 52-57 More about this Journal
Abstract
In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.
Keywords
High entropy alloy; Sintering; Mechanical alloying; Powder; Ball milling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.- T. Shun, C.-H. Tsau and S.-Y. Chang: Adv. Eng. Mater., 6 (2004) 299.   DOI
2 Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu: Prog. Mater. Sci., 61 (2014) 1.   DOI
3 M.-H. Tsai and J.-W. Yeh: Mater. Res. Lett., 2 (2014) 107.   DOI
4 M. G. Poletti, G. Fiore, F. Gili, D. Mangherini and L. Battezzati: Mater. Des., 115 (2017) 247.   DOI
5 J. I. Lee, H. S. Oh, J. H. Kim and E. S. Park: Korean J. Met. Mater., 55 (2017) 1.   DOI
6 S. I. Hong, J. Moon, S. K. Hong and H. S. Kim: Mater. Sci. Eng. A, 682 (2017) 569.   DOI
7 B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie: Science, 345 (2014) 1153.   DOI
8 Y. S. Na and K. R. Lim: Trends Met. Mater. Eng., 30 (2017) 50.
9 O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle: Intermetallics, 19 (2011) 698.   DOI
10 O. N. Senkov, S. V. Senkova and C. Woodward: Acta Mater., 68 (2014) 214.   DOI
11 O. N. Senkov, D. B. Miracle, K. J. Chaput and J.-P. Couzinie: J. Mater. Res., 33 (2018) 3092.   DOI
12 S. Praveen and H. S. Kim: Adv. Eng. Mater., 20 (2018) 1.
13 W. Guo, B. Liu, Y. Liu, T. Li, A. Fu, Q. Fang and Y. Nie: J. Alloys Compd., 776 (2019) 428.   DOI
14 K. S. Kormout, R. Pippan and A. Bachmaier: Adv. Eng. Mater., 19 (2017) 1.
15 D. Raabe, S. Ohsaki and K. Hono: Acta Mater., 57 (2009) 5254.   DOI
16 Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh and S.-K. Chen: J. Alloys Compd., 481 (2009) 768.   DOI
17 H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova and J. Materjicek: Mater. Sci. Eng. A, 689 (2017) 252.   DOI