• 제목/요약/키워드: Differentially expressed genes(DEGs)

검색결과 165건 처리시간 0.026초

Identification of Putative Regulatory Alterations Leading to Changes in Gene Expression in Chronic Obstructive Pulmonary Disease

  • Kim, Dong-Yeop;Kim, Woo Jin;Kim, Jung-Hyun;Hong, Seok-Ho;Choi, Sun Shim
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.333-344
    • /
    • 2019
  • Various genetic and environmental factors are known to be associated with chronic obstructive pulmonary disease (COPD). We identified COPD-related differentially expressed genes (DEGs) using 189 samples accompanying either adenocarcinoma (AC) or squamous cell carcinoma (SC), comprising 91 normal and 98 COPD samples. DEGs were obtained from the intersection of two DEG sets separately identified for AC and SC to exclude the influence of different cancer backgrounds co-occurring with COPD. We also measured patient samples named group 'I', which were unable to be determined as normal or COPD based on alterations in gene expression. The Gene Ontology (GO) analysis revealed significant alterations in the expression of genes categorized with the 'cell adhesion', 'inflammatory response', and 'mitochondrial functions', i.e., well-known functions related to COPD, in samples from patients with COPD. Multi-omics data were subsequently integrated to decipher the upstream regulatory changes linked to the gene expression alterations in COPD. COPD-associated expression quantitative trait loci (eQTLs) were located at the upstream regulatory regions of 96 DEGs. Additionally, 45 previously identified COPD-related miRNAs were predicted to target 66 of the DEGs. The eQTLs and miRNAs might affect the expression of 'respiratory electron transport chain' genes and 'cell proliferation' genes, respectively, while both eQTLs and miRNAs might affect the expression of 'apoptosis' genes. We think that our present study will contribute to our understanding of the molecular etiology of COPD accompanying lung cancer.

Identification of differentially expressed genes in the developmental stages from olive flounder Paralichthys olivaceus using an annealing control primer system

  • Kim, Young-Ok;Park, Eun-Mi;Nam, Bo-Hye;Kong, Hee-Jeong;Kim, Woo-Jin;Noh, Jae-Koo;Lee, Sang-Jun;Kim, Kyung-Kil
    • Animal cells and systems
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2010
  • We employed a new and improved differential display reverse transcription-polymerase chain reaction (DDRT-PCR) method, which involves annealing control primers (ACPs), to identify the genes that are specifically or prominently expressed in olive flounder (Paralichthys olivaceus) juveniles (35 days post-hatch; dph) compared to larval-stage (dph 21) flounder. Using 60 ACPs, we identified eight differentially expressed genes (DEGs) and basic local alignment search tool (BLAST) searches revealed eight known genes. Gene expression levels were confirmed by RT-PCR. Phosphoglucose isomerase (PGI) was highly expressed at 21 dph, while nephrosin, myosin light chain (MLC), myosin heavy chain (MHC), carboxypeptidase A, chymotrypsin B, fish-egg protein, and matrix protein were expressed at 35 dph. PGI, MLC, and MHC expression was further analyzed by RT-PCR. The differentially expressed genes identified in this study may provide insights into the molecular basis of development in olive flounder.

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Analysis of Key Genes and Pathways Associated with Colorectal Cancer with Microarray Technology

  • Liu, Yan-Jun;Zhang, Shu;Hou, Kang;Li, Yun-Tao;Liu, Zhan;Ren, Hai-Liang;Luo, Dan;Li, Shi-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1819-1823
    • /
    • 2013
  • Objective: Microarray data were analyzed to explore key genes and their functions in progression of colorectal cancer (CRC). Methods: Two microarray data sets were downloaded from Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified using corresponding packages of R. Functional enrichment analysis was performed with DAVID tools to uncover their biological functions. Results: 631 and 590 DEGs were obtained from the two data sets, respectively. A total of 32 common DEGs were then screened out with the rank product method. The significantly enriched GO terms included inflammatory response, response to wounding and response to drugs. Two interleukin-related domains were revealed in the domain analysis. KEGG pathway enrichment analysis showed that the PPAR signaling pathway and the renin-angiotensin system were enriched in the DEGs. Conclusions: Our study to systemically characterize gene expression changes in CRC with microarray technology revealed changes in a range of key genes, pathways and function modules. Their utility in diagnosis and treatment now require exploration.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • 한국가금학회지
    • /
    • 제47권1호
    • /
    • pp.9-19
    • /
    • 2020
  • 본 연구는 고병원성 조류 인플루엔자 바이러스(high pathogenic avian influenza virus; HPAIV)와 저병원성 조류인플루엔자 바이러스(low pathogenic avian virus; LPAIV)가 감염된 오리의 폐세포에서 보고된 기존 전사체 데이터를 재분석하여 조류 인플루엔자 감염에 대응하는 숙주의 공통 전사체를 발굴하고, 생물정보 분석을 실시하여 바이오 마커로서 가능성을 제시하기 위하여 수행하였다. 이전 연구에서 생산된 microarray 데이터 세트를 재분석하여, HPAIV와 LPAIV가 각각 감염된 오리의 폐세포에서 각각 총 731 및 439개의 차등발현 유전자를 발굴하였다. 이들 차등발현 유전자 중에서, 227개의 유전자가 HPAIV와 LPAIV가 감염된 세포에서 공통적으로 조절되어, 193개의 유전자는 발현이 증가한 반면, 34개의 유전자는 발현이 감소하였다. 생물정보 분석을 통하여 차등발현 유전자들의 기능에 대한 주석달기를 실시하여, 리보솜과 단백질 대사 및 유전자 발현 관련 GO가 풍부해짐을 확인하였다. REACTOME 분석을 통하여 단백질 및 RNA 대사 경로 및 콜라겐 생합성과 변형을 포함한 조직 복구 경로가 조절됨을 확인하였다. 보다 구체적으로, 번역 및 RNA 품질 관리 경로에 관여하는 단백질을 코딩하는 유전자는 HPAIV 및 LPAIV 감염에 반응하여 발현의 증가 또는 감소하는 방향으로 조절되어 AIV가 숙주 번역 기계를 억제함으로써 숙주 방어 시스템을 회피할 수 있거나 번역을 위해 세포질로 내보내기 전에 AIV가 억제될 수 있음을 시사한다. AIV 감염은 바이러스 감염으로 인한 조직의 병변 형성을 조절하는 경로를 활성화시킬 수 있음을 시사한다.

Analysis of Molecular Pathways in Pancreatic Ductal Adenocarcinomas with a Bioinformatics Approach

  • Wang, Yan;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2561-2567
    • /
    • 2015
  • Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats

  • Yoo, Won Gi;Kang, Jung-Mi;Le, Huong Giang;Pak, Jhang Ho;Hong, Sung-Jong;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • 제58권5호
    • /
    • pp.513-525
    • /
    • 2020
  • Clonorchis sinensis is a food-borne trematode that infects more than 15 million people. The liver fluke causes clonorchiasis and chronical cholangitis, and promotes cholangiocarcinoma. The underlying molecular pathogenesis occurring in the bile duct by the infection is little known. In this study, transcriptome profile in the bile ducts infected with C. sinensis were analyzed using microarray methods. Differentially expressed genes (DEGs) were 1,563 and 1,457 at 2 and 4 weeks after infection. Majority of the DEGs were temporally dysregulated at 2 weeks, but 519 DEGs showed monotonically changing expression patterns that formed seven distinct expression profiles. Protein-protein interaction (PPI) analysis of the DEG products revealed 5 sub-networks and 10 key hub proteins while weighted co-expression network analysis (WGCNA)-derived gene-gene interaction exhibited 16 co-expression modules and 13 key hub genes. The DEGs were significantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes pathways, which were related to original systems, cellular process, environmental information processing, and human diseases. This study uncovered a global picture of gene expression profiles in the bile ducts infected with C. sinensis, and provided a set of potent predictive biomarkers for early diagnosis of clonorchiasis.

Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig

  • Gao, Pengfei;Cheng, Zhimin;Li, Meng;Zhang, Ningfang;Le, Baoyu;Zhang, Wanfeng;Song, Pengkang;Guo, Xiaohong;Li, Bugao;Cao, Guoqing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1084-1094
    • /
    • 2019
  • Objective: The aim of this study was to select the candidate genes affecting meat quality and preliminarily explore the related molecular mechanisms in the Mashen pig. Methods: The present study explored genetic factors affecting meat quality in the Mashen pig using RNA sequencing (RNA-Seq). We sequenced the transcriptomes of 180-day-old Mashen and Large White pigs using longissimus dorsi to select differentially expressed genes (DEGs). Results: The results indicated that a total of 425 genes were differentially expressed between Mashen and Large White pigs. A gene ontology enrichment analysis revealed that DEGs were mainly enriched for biological processes associated with metabolism and muscle development, while a Kyoto encyclopedia of genes and genomes analysis showed that DEGs mainly participated in signaling pathways associated with amino acid metabolism, fatty acid metabolism, and skeletal muscle differentiation. A MCODE analysis of the protein-protein interaction network indicated that the four identified subsets of genes were mainly associated with translational initiation, skeletal muscle differentiation, amino acid metabolism, and oxidative phosphorylation pathways. Conclusion: Based on the analysis results, we selected glutamic-oxaloacetic transaminase 1, malate dehydrogenase 1, pyruvate dehydrogenase 1, pyruvate dehydrogenase kinase 4, and activator protein-1 as candidate genes affecting meat quality in pigs. A discussion of the related molecular mechanisms is provided to offer a theoretical basis for future studies on the improvement of meat quality in pigs.