DOI QR코드

DOI QR Code

Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats

  • Yoo, Won Gi (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Kang, Jung-Mi (Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine) ;
  • Le, Huong Giang (Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine) ;
  • Pak, Jhang Ho (Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center) ;
  • Hong, Sung-Jong (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Sohn, Woon-Mok (Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine) ;
  • Na, Byoung-Kuk (Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine)
  • Received : 2020.09.08
  • Accepted : 2020.09.27
  • Published : 2020.10.31

Abstract

Clonorchis sinensis is a food-borne trematode that infects more than 15 million people. The liver fluke causes clonorchiasis and chronical cholangitis, and promotes cholangiocarcinoma. The underlying molecular pathogenesis occurring in the bile duct by the infection is little known. In this study, transcriptome profile in the bile ducts infected with C. sinensis were analyzed using microarray methods. Differentially expressed genes (DEGs) were 1,563 and 1,457 at 2 and 4 weeks after infection. Majority of the DEGs were temporally dysregulated at 2 weeks, but 519 DEGs showed monotonically changing expression patterns that formed seven distinct expression profiles. Protein-protein interaction (PPI) analysis of the DEG products revealed 5 sub-networks and 10 key hub proteins while weighted co-expression network analysis (WGCNA)-derived gene-gene interaction exhibited 16 co-expression modules and 13 key hub genes. The DEGs were significantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes pathways, which were related to original systems, cellular process, environmental information processing, and human diseases. This study uncovered a global picture of gene expression profiles in the bile ducts infected with C. sinensis, and provided a set of potent predictive biomarkers for early diagnosis of clonorchiasis.

Keywords

References

  1. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology 2009; 136: 1134-1144. https://doi.org/10.1053/j.gastro.2009.02.038
  2. Anonymous. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994; 61: 1-241.
  3. Sawanyawisuth K, Wongkham C, Araki N, Zhao Q, Riggins GJ, Wongkham S. Serial analysis of gene expression reveals promising therapeutic targets for liver fluke-associated cholangiocarcinoma. Asian Pac J Cancer Prev 2012; 13 (suppl): 89-93.
  4. Yongvanit P, Pinlaor S, Bartsch H. Oxidative and nitrative DNA damage: key events in opisthorchiasis-induced carcinogenesis. Parasitol Int 2012; 61: 130-135. https://doi.org/10.1016/j.parint.2011.06.011
  5. Pak JH, Kim DW, Moon JH, Nam JH, Kim JH, Ju JW, Kim TS, Seo SB. Differential gene expression profiling in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. Parasitol Res 2009; 104: 1035-1046. https://doi.org/10.1007/s00436-008-1286-8
  6. Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components. Korean J Parasitol 2019; 57: 379-387. https://doi.org/10.3347/kjp.2019.57.4.379
  7. Kang JM, Yoo WG, Le HG, Lee J, Sohn WM, Na BK. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-kappaB-dependent MAPK pathways. Parasit Vectors 2020; 13: 20. https://doi.org/10.1186/s13071-020-3882-0
  8. Rahman SM, Bae YM, Hong ST, Choi MH. Early detection and estimation of infection burden by real-time PCR in rats experimentally infected with Clonorchis sinensis. Parasitol Res 2011; 109: 297-303. https://doi.org/10.1007/s00436-011-2253-3
  9. Rahman SMM, Song HB, Jin Y, Oh JK, Lim MK, Hong ST, Choi MH. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples. PLoS Negl Trop Dis 2017; 11: e0005995. https://doi.org/10.1371/journal.pntd.0005995
  10. Pan XH. Pathway crosstalk analysis based on protein-protein network analysis in ovarian cancer. Asian Pac J Cancer Prev 2012; 13: 3905-3909. https://doi.org/10.7314/APJCP.2012.13.8.3905
  11. Na BK, Kang JM, Sohn WM. CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 2008; 38: 493-502. https://doi.org/10.1016/j.ijpara.2007.09.001
  12. Kang JM, Bahk YY, Cho PY, Hong SJ, Kim TS, Sohn WM, Na BK. A family of cathepsin F cysteine proteases of Clonorchis sinensis is the major secreted proteins that are expressed in the intestine of the parasite. Mol Biochem Parasitol 2010; 170: 7-16. https://doi.org/10.1016/j.molbiopara.2009.11.006
  13. Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-Garcia P, Sanchez R, Cubuk C, Hidalgo MR, Amadoz A, HernansaizBallesteros RD, Aleman A, Tarraga J, Montaner D, Medina I, Dopazo J. Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res 2015; 43: W117-121. https://doi.org/10.1093/nar/gkv384
  14. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207-210. https://doi.org/10.1093/nar/30.1.207
  15. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185-193. https://doi.org/10.1093/bioinformatics/19.2.185
  16. Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, Elkon R, Tanay A, Sharan R, Shiloh Y, Shamir R. Expander: from expression microarrays to networks and functions. Nat Protoc 2010; 5: 303-322. https://doi.org/10.1038/nprot.2009.230
  17. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003; 34: 374-378. https://doi.org/10.2144/03342mt01
  18. Copenhaver MD, Holland B. Computation of the distribution of the maximum studentized range statistic with application to multiple significance testing of simple effects. Journal of Statistical Computation and Simulation 1988; 30: 1-15. https://doi.org/10.1080/00949658808811082
  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47. https://doi.org/10.1093/nar/gkv007
  20. Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 2018; 19: 534. https://doi.org/10.1186/s12859-018-2486-6
  21. Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological database network. Bioinformatics 2009; 25: 555-556. https://doi.org/10.1093/bioinformatics/btn654
  22. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006; 7: 191. https://doi.org/10.1186/1471-2105-7-191
  23. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res 2017; 45 (D1): 362-368.
  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504. https://doi.org/10.1101/gr.1239303
  25. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res 2019; 18: 623-632. https://doi.org/10.1021/acs.jproteome.8b00702
  26. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 2012; 9: 471-472. https://doi.org/10.1038/nmeth.1938
  27. Mlecnik B, Galon J, Bindea G. Automated exploration of gene ontology term and pathway networks with ClueGO-REST. Bioinformatics 2019; 35: 3864-3866. https://doi.org/10.1093/bioinformatics/btz163
  28. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 2013; 29: 661-663. https://doi.org/10.1093/bioinformatics/btt019
  29. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8 Suppl 4: S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  30. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559. https://doi.org/10.1186/1471-2105-9-559
  31. Langfelder P, Horvath S. WGCNA package FAQ. 2017.
  32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545-15550. https://doi.org/10.1073/pnas.0506580102
  33. Hernandez-de-Diego R, Tarazona S, Martinez-Mira C, BalzanoNogueira L, Furio-Tari P, Pappas GJ, Jr., Conesa A. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res 2018; 46 (W1): 503-509.
  34. Furnham N, Sillitoe I, Holliday GL, Cuff AL, Rahman SA, Laskowski RA, Orengo CA, Thornton JM. FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies. Nucleic Acids Res 2012; 40 (D1): 776-782.
  35. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Res 2018; 46 (D1): 754-761.
  36. Rodenburg W, Keijer J, Kramer E, Roosing S, Vink C, Katan MB, van der Meer R, Bovee-Oudenhoven IM. Salmonella induces prominent gene expression in the rat colon. BMC Microbiol 2007; 7: 84. https://doi.org/10.1186/1471-2180-7-84
  37. Han H, Peng J, Hong Y, Zhang M, Han Y, Fu Z, Shi Y, Xu J, Tao J, Lin J. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S.japonicum infection. Parasit Vectors 2013; 6: 120. https://doi.org/10.1186/1756-3305-6-120
  38. Wu Z, Boonmars T, Boonjaraspinyo S, Nagano I, Pinlaor S, Puapairoj A, Yongvanit P, Takahashi Y. Candidate genes involving in tumorigenesis of cholangiocarcinoma induced by Opisthorchis viverrini infection. Parasitol Res 2011; 109: 657-673. https://doi.org/10.1007/s00436-011-2298-3
  39. Kim DM, Ko BS, Ju JW, Cho SH, Yang SJ, Yeom YI, Kim TS, Won Y, Kim IC. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae. Parasitol Res 2009; 106: 269-278. https://doi.org/10.1007/s00436-009-1662-z
  40. Cortes-Selva D, Elvington AF, Ready A, Rajwa B, Pearce EJ, Randolph GJ, Fairfax KC. Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Front Immunol 2018; 9: 2580. https://doi.org/10.3389/fimmu.2018.02580
  41. Jiang M, Zeng Q, Dai S, Liang H, Dai F, Xie X, Lu K, Gao C. Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles. Mol Med Rep 2017; 15: 380-386. https://doi.org/10.3892/mmr.2016.6021
  42. Kashyap S, Kumar S, Agarwal V, Misra DP, Phadke SR, Kapoor A. Protein protein interaction network analysis of differentially expressed genes to understand involved biological processes in coronary artery disease and its different severity. Gene Reports 2018; 12: 50-60. https://doi.org/10.1016/j.genrep.2018.05.008
  43. Sharma MR, Polavarapu R, Roseman D, Patel V, Eaton E, Kishor PB, Nanji AA. Increased severity of alcoholic liver injury in female verses male rats: a microarray analysis. Exp Mol Pathol 2008; 84: 46-58. https://doi.org/10.1016/j.yexmp.2007.10.001
  44. Yang Q, Mattick JS, Orman MA, Nguyen TT, Ierapetritou MG, Berthiaume F, Androulakis IP. Dynamics of hepatic gene expression profile in a rat cecal ligation and puncture model. J Surg Res 2012; 176: 583-600. https://doi.org/10.1016/j.jss.2011.11.1031
  45. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116-5121. https://doi.org/10.1073/pnas.091062498
  46. Sabidussi G. The centrality index of a graph. Psychometrika 1966; 31: 581-603. https://doi.org/10.1007/BF02289527
  47. Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977; 40: 35-41. https://doi.org/10.2307/3033543
  48. Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, Monticelli LA, Moriyama S, Putzel GG, Rakhilin N, Shen X, Kostenis E, Konig GM, Senda T, Carpenter D, Farber DL, Artis D. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 2017; 549: 282-286. https://doi.org/10.1038/nature23676
  49. Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais NL, Harris N, Veiga-Fernandes H. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 2017; 549: 277-281. https://doi.org/10.1038/nature23469
  50. Thoompumkal IJ, Rehna K, Anbarasu K, Mahalingam S. Leucine Zipper Down-regulated in Cancer-1 (LDOC1) interacts with Guanine nucleotide binding protein-like 3-like (GNL3L) to modulate Nuclear Factor-kappa B (NF-kappaB) signaling during cell proliferation. Cell Cycle 2016; 15: 3251-3267. https://doi.org/10.1080/15384101.2016.1242534
  51. Airas N, Nareaho A, Linden J, Valo E, Hautaniemi S, Jokelainen P, Sukura A. Early Trichinella spiralis and Trichinella nativa infections induce similar gene expression profiles in rat jejunal mucosa. Exp Parasitol 2013; 135: 363-369. https://doi.org/10.1016/j.exppara.2013.07.024
  52. Mayer DA, Fried B. The role of helminth infections in carcinogenesis. Adv Parasitol 2007; 65: 239-296. https://doi.org/10.1016/S0065-308X(07)65004-0
  53. Lin R, Lu G, Wang J, Zhang C, Xie W, Lu X, Mantion G, Martin H, Richert L, Vuitton DA, Wen H. Time course of gene expression profiling in the liver of experimental mice infected with Echinococcus multilocularis. PLoS One 2011; 6: e14557. https://doi.org/10.1371/journal.pone.0014557
  54. Kosik-Bogacka DI, Wojtkowiak-Giera A, Kolasa A, Salamatin R, Jagodzinski PP, Wandurska-Nowak E. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Exp Parasitol 2012; 130: 261-266. https://doi.org/10.1016/j.exppara.2011.12.002
  55. Semnani RT, Venugopal PG, Leifer CA, Mostbock S, Sabzevari H, Nutman TB. Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites. Blood 2008; 112: 1290-1298.
  56. Zhang C, Wang J, Lu G, Li J, Lu X, Mantion G, Vuitton DA, Wen H, Lin R. Hepatocyte proliferation/growth arrest balance in the liver of mice during E. multilocularis infection: a coordinated 3-stage course. PLoS One 2012; 7: e30127. https://doi.org/10.1371/journal.pone.0030127
  57. Zhao Y, Gui W, Niu F, Chong S. The MAPK Signaling Pathways as a Novel Way in Regulation and Treatment of Parasitic Diseases. Diseases 2019; 7: 9. https://doi.org/10.3390/diseases7010009

Cited by

  1. Transcriptomic profiling of three-dimensional cholangiocyte spheroids long term exposed to repetitive Clonorchis sinensis excretory-secretory products vol.14, pp.1, 2020, https://doi.org/10.1186/s13071-021-04717-2