• Title/Summary/Keyword: Differentially Expressed Gene(DEG)

Search Result 52, Processing Time 0.025 seconds

Identification of Putative Regulatory Alterations Leading to Changes in Gene Expression in Chronic Obstructive Pulmonary Disease

  • Kim, Dong-Yeop;Kim, Woo Jin;Kim, Jung-Hyun;Hong, Seok-Ho;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.333-344
    • /
    • 2019
  • Various genetic and environmental factors are known to be associated with chronic obstructive pulmonary disease (COPD). We identified COPD-related differentially expressed genes (DEGs) using 189 samples accompanying either adenocarcinoma (AC) or squamous cell carcinoma (SC), comprising 91 normal and 98 COPD samples. DEGs were obtained from the intersection of two DEG sets separately identified for AC and SC to exclude the influence of different cancer backgrounds co-occurring with COPD. We also measured patient samples named group 'I', which were unable to be determined as normal or COPD based on alterations in gene expression. The Gene Ontology (GO) analysis revealed significant alterations in the expression of genes categorized with the 'cell adhesion', 'inflammatory response', and 'mitochondrial functions', i.e., well-known functions related to COPD, in samples from patients with COPD. Multi-omics data were subsequently integrated to decipher the upstream regulatory changes linked to the gene expression alterations in COPD. COPD-associated expression quantitative trait loci (eQTLs) were located at the upstream regulatory regions of 96 DEGs. Additionally, 45 previously identified COPD-related miRNAs were predicted to target 66 of the DEGs. The eQTLs and miRNAs might affect the expression of 'respiratory electron transport chain' genes and 'cell proliferation' genes, respectively, while both eQTLs and miRNAs might affect the expression of 'apoptosis' genes. We think that our present study will contribute to our understanding of the molecular etiology of COPD accompanying lung cancer.

Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats

  • Yoo, Won Gi;Kang, Jung-Mi;Le, Huong Giang;Pak, Jhang Ho;Hong, Sung-Jong;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.513-525
    • /
    • 2020
  • Clonorchis sinensis is a food-borne trematode that infects more than 15 million people. The liver fluke causes clonorchiasis and chronical cholangitis, and promotes cholangiocarcinoma. The underlying molecular pathogenesis occurring in the bile duct by the infection is little known. In this study, transcriptome profile in the bile ducts infected with C. sinensis were analyzed using microarray methods. Differentially expressed genes (DEGs) were 1,563 and 1,457 at 2 and 4 weeks after infection. Majority of the DEGs were temporally dysregulated at 2 weeks, but 519 DEGs showed monotonically changing expression patterns that formed seven distinct expression profiles. Protein-protein interaction (PPI) analysis of the DEG products revealed 5 sub-networks and 10 key hub proteins while weighted co-expression network analysis (WGCNA)-derived gene-gene interaction exhibited 16 co-expression modules and 13 key hub genes. The DEGs were significantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes pathways, which were related to original systems, cellular process, environmental information processing, and human diseases. This study uncovered a global picture of gene expression profiles in the bile ducts infected with C. sinensis, and provided a set of potent predictive biomarkers for early diagnosis of clonorchiasis.

Effects of Daihwangmudan-tang on Urate Lowering and Detection of Relevant Genes (대황목단탕(大黃牧丹湯)의 요산지표 개선효과와 관련 유전자 탐색)

  • Kim Joong-Bae;Chi Gyoo-Yong;Eom Hyun-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1534-1540
    • /
    • 2005
  • In order to testify the urate lowering effects of Daihwangmudan-tang(DMT), ICR mice were injected monosodium urate into the abdominal cavity and then DMT was administered on 2 and 4 days after Injection. Uric acid and triglyceride were measured as hematological indices of gout, and some genes related with this change were identified by ACP based GeneFishing PCR method and direct sequencing. From this experiment, DMT highly decreased the blood levels of uric acid and significantly suppressed and lowered the acute increment of triglyceride level. There were 11 differentially expressed genes(DEG) having relations with positive actions of DMT, and 4 major genes in the middle of DEGs were sequenced; Mfap 2, jagged 2, Hsd17b7, DkkI-1, These genes were supposed that several mechanisms through interleukin 1 and T-cell anergy, LDL cholesterol metabolism, wnt pathway would be related with the anti-inflammation effect against gout.

Effect of Tetrodotoxin on the Proliferation and Gene Expression of Human SW620 Colorectal Cancer Cells

  • Bae, Yun-Ho;Kim, Hun;Lee, Sung-Jin
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Tetrodotoxin (TTX) is a natural neurotoxin found in several species of puffer fish belonging to Tetraodon fugu genus and has been reported to affect processes such as proliferation, metastasis and invasion of various cancer cells. However, it was not revealed which genes were influenced by these reactions. In this experiment, it was examined in human SW620 colorectal cancer cells. The proliferation of SW620 cells was significantly reduced when treated with 0, 1, 10 and 100 μM TTX for 48 h. It was confirmed using Annexin V-propidium iodide staining that some apoptosis was induced. Differentially expressed genes (DEGs) affecting cell proliferation through RNA sequencing (RNA-seq) were selected. The expression change of DEGs was confirmed by conducting quantitative real-time polymerase chain reaction (qRT-PCR). As a result, the mRNA expression of FOS and WDR48 genes was found to be increased in the 100 μM TTX treatment group compared to the control group. On the other hand, the mRNA expression of ALKBH7, NDUFA13, RIPPLY3 and SELENOM genes was found to be reduced, and in the case of the ALKBH7 gene was identified to show significant differences. This experiment suggests that TTX can be used as an important fundamental data to elucidate the mechanism that inhibits the proliferation of SW620 cells.

Life Cycle, Morphology and Gene Expression of Harpacticoid Copepod, Tigriopus japonicus s.l. Exposed to 4-nonylphenol (4-nonylphenol에 노출된 저서성 요각류 Tigriopus joponicus s.l.의 생활사, 형태와 유전자 발현)

  • Bang, Hyun-Woo;Lee, Won-Choel;Lee, Seung-Han;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.81-89
    • /
    • 2008
  • The eco-toxicological effects of endocrine disrupter, 4-nonylphenol (4NP) were observed and detected on the harpacticoid copepod, Tigriopus japonicus s.l. obtained and cultur-ed from our coast. There were no significant differences survival rate, sex ratio, and fecundity on T. japonicus s.l. at as low as $30{\mu}gL^{-1}$ of 4 NP exposure. Whereas, 4NP induced developmental delay, decreasing biomass and body size of nauplius and copepodite. Also, Differentially Expressed Gene (DEG) was conducted to detecting gene expression for potential biomarkers response to 4NP. As a result, full lifecycle research on morphology and gene expression of T. japonicus s.l. suggested potential bioindicators or biomarkers for environmental monitoring and assessments.

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

Transcriptomic Analysis of the Difference of Bovine Satellite Cell Between Longissimus dorsi and Semimembranosus on Hanwoo Muscle Tissues (한우의 등심과 사태조직 유래 근육위성세포의 성장단계별 유전발현 차이 분석)

  • Kim, H.J.;Kang, D.H.;Park, B.H.;Lee, W.Y.;Choi, J.H.;Chung, K.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2021
  • The skeletal muscle development of Hanwoo steer has been processed in the prenatal and postnatal periods. Bovine satellite cell located in perimysium of muscle tissues has differentially distributed in peripheral tissues. The study of postnatal development of satellite cells can help understand the genetic and functional regulation of meat characteristics. Factors affecting muscle size increase are related to the accumulation of DNA or synthesis of RNA proteins. In this study, we observed muscle development and differentiation after culturing bovine satellite cells derived from longissimus dorsi and semimembranosus regions of Hanwoo muscle tissue. In addition, RNA sequencing data were analyzed for differentially expressed genes (DEG) involved in intracellular muscle development and growth. The DEG of the two muscle tissues were compared according to 1day, 2day, 4day, and 7day. The overall gene expression level was confirmed by the heat map. Gene Ontology (GO) classification method was used to compare the expression level of gene groups affecting LD and SM development. The histology of GO was consistent with the time-cause change of LD and SM cell morphology. SM showed more active skeletal muscle development than LD. Even within the same time, SM expressed more genes than LD, thus synthesizing more muscle fibers

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF

Differential Gene Expression Induced by Naphthalene in Two Human Cell Line, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mee;Song, Mi-Kyung;Youk, Da-Young;Choi, Han-Saem;Sarma, Sailendra Nath;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • Naphthalene is bicyclic aromatic compound that is widely used in various domestic and commercial applications including lavatory scent disks, soil fumigants and moth balls. Exposure to naphthalene results in the development of bronchiolar damage, cataracts and hemolytic anemia in humans and laboratory animals. However, little information is available regarding the mechanism of naphthalene toxicity. We investigated gene expression profiles and potential signature genes in human hepatocellular carcinoma HepG2 cells and human promyelocytic leukemia HL-60 cells after 3 h and 48 h incubation with the IC$_{20}$ and IC$_{50}$ of naphthalene by using 44 k agilent whole human genome oligomicroarray and operon human whole 35 k oligomicroarray, respectively. We identified 616 up-regulated genes and 2,088 down-regulated genes changed by more than 2-fold by naphthalene in HepG2 cells. And in HL-60, we identified 138 up-regulated genes and 182 down-regulated genes changed by more than 2-fold. This study identified several interesting targets and functions in relation to naphthalene-induced toxicity through a gene ontology analysis method. Apoptosis and cell cycle related genes are more commonly expressed than other functional genes in both cell lines. In summary, the use of in vitro models with global expression profiling emerges as a relevant approach toward the identification of biomarkers associated with toxicity after exposure to a variety of environmental toxicants.