DOI QR코드

DOI QR Code

Transcriptomic Analysis of the Difference of Bovine Satellite Cell Between Longissimus dorsi and Semimembranosus on Hanwoo Muscle Tissues

한우의 등심과 사태조직 유래 근육위성세포의 성장단계별 유전발현 차이 분석

  • Kim, H.J. (Institute of Integrated Technology, CJ Blosson Park) ;
  • Kang, D.H. (Department of Beef Science, Korea National College of Agriculture & Fisheries) ;
  • Park, B.H. (Department of Beef Science, Korea National College of Agriculture & Fisheries) ;
  • Lee, W.Y. (Department of Beef Science, Korea National College of Agriculture & Fisheries) ;
  • Choi, J.H. (Department of Beef Science, Korea National College of Agriculture & Fisheries) ;
  • Chung, K.Y. (Department of Beef Science, Korea National College of Agriculture & Fisheries)
  • 김휘재 (CJ제일제당 융합기술연구소) ;
  • 강동훈 (한국농수산대학 한우학과) ;
  • 박보혜 (한국농수산대학 한우학과) ;
  • 이원영 (한국농수산대학 한우학과) ;
  • 최지환 (한국농수산대학 한우학과) ;
  • 정기용 (한국농수산대학 한우학과)
  • Received : 2021.05.04
  • Accepted : 2021.06.17
  • Published : 2021.06.28

Abstract

The skeletal muscle development of Hanwoo steer has been processed in the prenatal and postnatal periods. Bovine satellite cell located in perimysium of muscle tissues has differentially distributed in peripheral tissues. The study of postnatal development of satellite cells can help understand the genetic and functional regulation of meat characteristics. Factors affecting muscle size increase are related to the accumulation of DNA or synthesis of RNA proteins. In this study, we observed muscle development and differentiation after culturing bovine satellite cells derived from longissimus dorsi and semimembranosus regions of Hanwoo muscle tissue. In addition, RNA sequencing data were analyzed for differentially expressed genes (DEG) involved in intracellular muscle development and growth. The DEG of the two muscle tissues were compared according to 1day, 2day, 4day, and 7day. The overall gene expression level was confirmed by the heat map. Gene Ontology (GO) classification method was used to compare the expression level of gene groups affecting LD and SM development. The histology of GO was consistent with the time-cause change of LD and SM cell morphology. SM showed more active skeletal muscle development than LD. Even within the same time, SM expressed more genes than LD, thus synthesizing more muscle fibers

한우의 성장단계별 부위 근육발달을 이해하는 것은 도체율 개선에 따른 소득증대와 증체율 증가에 따른 생산효율 향상에 긍정적인 영향을 미친다. 본 연구에서는 한우의 등심과 사태 유래 근육위성세포를 분리 후 세포단위의 발달 및 분화를 비교하여 transcriptome 단위의 작용기전을 제시하였다. 한우의 부위별 근육 유래 근육위성세포의 근섬유의 양은 4일에 가장 높게 나타났고 이후 감소하였다. 한우의 근육위성세포의 발달 단계에 따라 발현되는 총 전사체 유전자의 종류는 사태근육 위성세포에서 높게 나타났다. 등심과 사태 근육 유래 위성세포의 발달단계에 따라 유의적인 차등 유전자 453개를 찾아냈고 이를 이용한 기능유 전체 분석이 필요하다. 등심과 사태유래 근육위성세포를 이용한 동일조건 분화 비교에서 사태유래 근육 위성세포의 분화 시 myosin complex, skeletal muscle contraction, troponin complex, skeletal muscle tissue development 와 같은 근섬유 형성관련 유전자의 발현이 높게 나타나는 것으로 보아 같은 개체의 근육조직에서도 부위별로 차등 발달이 되고 있다는 것을 알 수 있다. 기존 연구에서는 근육의 성장에 대한 이해를 위해 사양과 영양관련 시험이 많이 이루어졌다. 향후 세포단위의 연구들이 많이 이루어져 작용기작에 대한 생물정보 자료를 추가로 적용한다면 한우의 정밀사양을 적용할수 있는 바탕이 마련될 것이다. 또한 근육위성세포의 연구는 추후 동물실험 윤리제도 강화에 따른 비동물 전임상 screening 시험 활용과 대체단백질 산업의 주요 이슈인 배양육 소재 개발 연구와 같이 축산시험연구의 지속적인 확장성에 많은 영향을 미칠 것으로 생각된다.

Keywords

References

  1. 축산물품질평가원. (2020). 축산물등급판정통계 연보.
  2. Berg, R. T. and Butterfield, R. M. (1968). Growth Patterns of Bovine Muscle, Fat and Bone. Journal of Animal Science. 27(3):611-619. https://doi.org/10.2527/jas1968.273611x
  3. Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S. (2008). AmiGO: online access to ontology and annotation data. Bioinformatics, 25(2):288-289. https://doi.org/10.1093/bioinformatics/btn615
  4. de las Heras-Saldana, Sara., Chung, K. Y., Lee, S. H. and Gondro. C. (2019). Gene expression on Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC genomics 20:156 https://doi.org/10.1186/s12864-019-5530-7
  5. Gibson, M. C. and Schultz, E. (1983). Age -related differences in absolute numbers of skeletal muscle satellite cells. Muscle & nerve, 6(8):574-580. https://doi.org/10.1002/mus.880060807
  6. Herault, F., Vincent, A., Dameron, O., Le Roy, P., Cherel, P. and Damon, M. (2014). The longissimus and semimembranosus muscles display marked differences in their gene expression profiles in pig. PloS one. 9(5):e96491. https://doi.org/10.1371/journal.pone.0096491
  7. Johnson, B. J. and Chung, K. Y. (2007). Alterations in the physiology of growth of cattle with growth-enhancing compounds. Veterinary Clinics in Food Animal Practice 23:321-332. https://doi.org/10.1016/j.cvfa.2007.05.003
  8. Johnson, B. J., Smith, S. B. and Chung, K. Y. (2014). Historical overview of the effect of β-adrenergic agonists on beef cattle production. Asian-Australasian Journal of Animal Sciences. 27:757-766. https://doi.org/10.5713/ajas.2012.12524
  9. Lee, H. R., Henderson, S. A., Reynolds, R., Dunnmon, P., Yuan, D. and Chien, K. R. (1988). Alpha 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. Journal of Biological Chemistry. 263(15):7352-7358. https://doi.org/10.1016/S0021-9258(18)68649-1
  10. O'Brien, T. X.,cLee, K. J. and Chien, K. R. (1993). Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proceedings of the National Academy of Sciences. 90(11):5157-5161. https://doi.org/10.1073/pnas.90.11.5157
  11. Rajesh, R. V., Jang, E. J., Choi, I. H., Heo, K. N., Yoon, D. H., Kim, T. H. and Lee, H. J. (2011). Proteomic analysis of bovine muscle satellite cells during myogenic differentiation. Asian-Australasian Journal of Animal Sciences. 24(9):1288-1302. https://doi.org/10.5713/ajas.2011.10344
  12. White, R. B., Bierinx, A. S., Gnocchi, V. F. and Zammit, P. S. (2010). Dynamics of muscle fibre growth during postnatal mouse development. BMC developmental biology. 10(1):21. https://doi.org/10.1186/1471-213X-10-21