• Title/Summary/Keyword: Differential-algebraic systems

Search Result 80, Processing Time 0.022 seconds

Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform (고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어)

  • Han, Sang-In;Lee, Myeong-Gyu;Kim, Jin-Tae;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

A Study on the Improvement of Numeric Integration Algorithm for the Dynamic Behavior Analysis of Flexible Machine Systems (탄성기계 시스템의 동적 거동 해석을 위한 수치 적분 알고리즘 개선에 관한 연구)

  • Kim, Oe-Jo;Kim, Hyun-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve this equation, coordinate partitioning method and constraint stabilization method are commonly used. The coordinate partitioning method divides the coordinate into independent and dependent coordinates. The most typical coordinate partitioning method arc LU decomposition, QR decomposition, projection method and SVD(sigular value decomposition).The objective of this research is to find a efficient coordinate partitioning method in flexible multibody systems and a hybrid decomposition algorithm which employs both LU and projection methods is proposed. The accuracy of the solution algorithm is checked with a slider-crank mechanism.

  • PDF

Real time simulation using multiple DSPs for fossil power plants (병렬처리를 이용한 화력발전소의 실시간 시뮬레이션)

  • 박희준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.480-483
    • /
    • 1997
  • A fossil power plant can be modeled by a lot of algebraic equations and differential equations. When we simulate a large, complicated fossil power plant by a computer such as workstation or PC, it takes much time until overall equations are completely calculated. Therefore, new processing systems which have high computing speed is ultimately needed to develope real-time simulators. Vital points of real-time simulators are accuracy, computing speed, and deadline observing. In this paper, we present a enhanced strategy in which we can provide powerful computing power by parallel processing of DSP processors with communication links. We designed general purpose DSP modules, and a VME interface module. Because the DSP module is designed for general purpose, we can easily expand the parallel system by just connecting new DSP modules to the system. Additionally we propose methods about downloading programs, initial data to each DSP module via VME bus, DPRAM and processing sequences about computing and updating values between DSP modules and CPU30 board when the simulator is working.

  • PDF

A Sudy on the Undamped Forced Vibration of Nonlinear Two-Degree-of-Freedom Systems (비선형 2자유도계의 비감쇠 강제진동 연구)

  • 박철희;박선재;윤영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 1988
  • The forced vibrations of nondissipative nonlinear two-degree-of-freedom system, subjected to periodic forcing functions, are investigated by use of the method of slowly changing phase and amplitude. The first order differential equations are derived for nonrationally solutions and the coupled nonlinear algebraic equations for stationary solutions. Through investigating the response curves of the system, which are obtained numerically by using Newton-Raphson method, it is found that the resonances can occur at more than the number of degree-of-freedom of the system depending on the relation between the nonlinear spring parameters, which has no counterpart in linear systems.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Measures of modal and gross controllability/observability for linear time-varying systems (선형 시변 시스템에 대한 모드 및 총가제어성/가관측성 척도)

  • Choe, Jae-Won;Lee, Ho-Chul;Lee, Dal-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.647-655
    • /
    • 1999
  • For linear time-varying systems described by the triple (A(t),B(t),C(t)) where A(t),B(t),C(t) are the system, the input, and the output matrices, respectively, we propose concepts for measures of modal and gross controllability /observability. We introduce a differential algebraic eigenbvalue theory for linear time-varying systems to calculate the PD-eigenvalues and left and right PD-eigenvectors of the system matrix A(t) which will be used to derive the concepts for the measures. The time-dependent angle between the left PD-eigenvectors of the system matrix A(t) and the columns of the input matrix B(t), and the magnitude of the each element of the input matrix B(t) are used to propose the modal controllability measure. Similarly, the time-dependent angle between the right PD-eigenvectors of the system matrix A(t) and the rows of the output matrix C(t) are used to propose the madal observability measure. Gross measure of controllability of a mode from all inputs and its gross measure of observability in all outputs for the linear time-varying systems are also proposed. Numerical examples are presented to illustrate the proposed concepts.

  • PDF