• Title/Summary/Keyword: Differential scanning calorimetry

Search Result 965, Processing Time 0.025 seconds

Study of the Curing Reaction Rate of a Glass Fiber Reinforced Bisphenol-A (BPA) Epoxy Prepreg by Differential Scanning Calorimetry (DSC) (Differential Scanning Calorimetry (DSC)를 이용한 유리섬유 Bisphenol-A(BPA)계 에폭시 프리프레그의 경화 반응 속도 연구)

  • Kwon, Hyeon-Jin;Park, Hee-Jung;Lee, Eun-Ju;Ku, Sang-Min;Kim, Seon-Hong;Lee, Kee-Yoon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The curing behavior of glass fiber reinforced epoxy prepregs based on Bisphenol-A (BPA) was studied by differential scanning calorimetry (DSC). The total heat of reaction(${\Delta}H_{total}=280.3J/g$) was determined based on the results of the dynamic heating scanning experiments. Isothermal experiments were carried out at $110{\sim}130^{\circ}C$, and it was observed that the maximum conversion and the maximum reaction rate were increased as temperature increased. Also Kamal equation was applied to analyze autocatalytic reaction of epoxy prepregs. The higher temperatures, the greater reaction rate constants ($k_1$, $k_2$). Theoretical values were calculated by these reaction rate constants and compared with experimental values. And it was confirmed that they were in reasonable agreement. At the beginning of the reaction, the experimental data and theoretical prediction were shown the same tendency, but at the end of reaction, the experimental data were smaller than theoretical predicted values due to reaction rates controlled by diffusion.

Kinetic Analysis of Energetic Materials Using Differential Scanning Calorimetry (DSC를 이용한 고에너지 물질의 반응속도식 추출과 활용)

  • Kim, Yoocheon;Park, Jungsoo;Yang, Seungho;Park, Honglae;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented on $B/KNO_3$ for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

Composition, Water-Holding Capacity and Effect on Starch Retrogradation of Rice Bran Dietary Fiber (미강 식이섬유의 조성과 보수력 및 전분노화에 미치는 영향)

  • Lee, Young-Heon;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-294
    • /
    • 1994
  • Dietary fiber contents in brans of the two representative Korean rice varieties, Chucheong and Sucheon were measured by the AOAC method, and the composition of total dietary fiber (TDF) was analyzed with the acid detergent fiber (ADF) procedure. Rice bran contained more than 25% of TDF, most of which was insoluble dietary fiber. Hemicellulose was shown to be the major constituent and rice bran dietary fiber contained distinctive amounts of cellulose and uronic acid. Consecutive acidalkaline treatment of rice bran considerably increased soluble dietary fiber (SDF) content and water-holding capacity (WHC). WHC of wheat flour-rice bran dietary fiber mixture increased with the proportion of rice bran dietary fiber. Analysis of the differential scanning calorimetry thermograms revealed that rice bran dietary fiber effectively retarded retrogradation of wheat starch.

  • PDF

A Study on Vulcanization Reaction of Modified Rubber Blends Using Dynamic Differential Scanning Calorimetry (Dynamic DSC를 이용한 개질 고무 블랜드의 가황 반응에 관한 연구)

  • Lee, Seung-Hyun;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Even though many studies have been reported about rubber vulcanization, it is still remained difficult to find a quantitative relationship between the final states of vulcanized rubber and initial formulation or processing conditions. Dynamic differential scanning calorimetry (DSC) method is known as a comparatively easy method to research for the rubber vulcanization in both experimental and analysis. In the present research, a study on the vulcanization reaction of NR/CB composites modified by isoprene(IR) and chloroprene(CR) rubbers is carried out using dynamic DSC method. Thermograms with several different heating rates were obtained and analyzed using the Kissinger method. Analysis showed that the vulcanization reaction was progressed through the first order reaction mechanism. In addition, the reaction temperature was severely influenced by the kinds or rubber modifiers, in this case, more influenced by CR than by IR. Those effects were clearly verified in the values of activation energy. Kinds of carbon blacks, however, could hardly influence on the reaction mechanism.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

The Analysis on the Effects of Hygrothermal Aging to THPP Using DSC and XPS (DSC와 XPS를 통한 수분노화가 THPP 점화제에 미치는 영향 분석)

  • Oh, Juyoung;Kim, Yoocheon;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2019
  • Titanium hydride potassium perchlorate (THPP) is one of the commonly utilized pyrotechnic materials in aerospace industries. The current study elucidates the effects of hygrothermal aging on the combustion of THPP experimentally. First, applying the Differential Scanning Calorimetry (DSC) and isocoversional method, both the delay of reaction start and decrease in maximum reaction rate were observed. The kinetics parameters tended to fluctuate depending the thermal reaction or intermediate product formation of THPP. Also, the oxidants decomposition and fuel oxidation phenomenon were discovered by X-ray photoelectron spectroscopy (XPS). The experimental heat from DSC data were verified as reasonable by comparing with the theoretical heat obtained utilizing both THPP formulation from XPS and NASA Chemical Equilibrium with Applications (CEA). Both data had identical variation trend, which expecially had the highest heat value at 10 weeks aged sample.

The Influence of the Annealing of Corn Starch on the formation and Characteristics of Enzyme-resistant Starch

  • Yoon, Ji-Young;Lee, Young-Eun
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • The Physical properties of corn starch were investigated by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry during the formation of enzyme-resistant starch(RS). Samples were studied in their native states and after annealing at 50, 55, 60 and 65℃ in excess water(starch : water=1:3) for 48hr. Starch granules became smaller and more rounded after annealing than in their native state. Annealing did not change the X-ray profile of native corn starch. After autoclaving-cooling cycles, native starch lost most of its crystallinity but annealed ones showed some of their crystallinity left as diffuse or poor B-type, which didn't relate to increasing Rs yields. During formation of RS, however, both native and annealed starches changed their X-ray profile from A-type to poor B-type of retrograded amylose. Annealing caused an increase in gelatinization temperature and enthalpy, but a narrowing of gelatinization temperature range. Only starch annealed at 65℃, however, showed a decrease in enthalpy even though its gelatinization temperature increased, which appeared to be due to the partial gelatinization in the amorphous region during annealing. Peak height index(PHI), the ratio of ΔH to Ti-To, increased by annealing. PHI values, therefore, showed the possibility as an indicator to predict RS yield which cannot be differentiated by differential scanning calorimetry and X-ray diffraction data.

  • PDF

Synthesis and characterization of starch$^Na+$-montmorillonite clay nanocomposites

  • Na, Seong-Ki;Park, Jong-Shin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.67-68
    • /
    • 2003
  • Native corn starch and montmorillonite caly nanocomposites were prepared using the glycerol as the plasticizer. These were characterized by mechanical analysis, X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The tensile strength increased with the clay content to a maximum point and then decreased due to gapping between the two phases. Dispersion of the layered silicate within the starch was verified using X-ray diffraction pattern. Examination of these materials by scanning electron showed that intercalates have good wetting to the starch surface.

  • PDF

Cure Shrinkage Behavior of Polymer Matrix Composite according to Degree of Cure (경화도에 따른 고분자 기지 복합재의 경화 수축률 거동)

  • Kwon, Hyuk;Hwang, Seong-Soon;Choi, Won-Jong;Lee, Jae-Hwan;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Cure shrinkage during cure process of polymer matrix composites develope residual stress that cause some structural deformation, such as spring-in, spring-out and warpage. The carbon/epoxy prepreg used in this study is Hexply M21EV/34%/UD268NFS/IMA-12K supplied by Hexcel corp. Cure shrinkage and degree of cure measured by TMA(thermomechanical analyzer) and DSC(differential scanning calorimetry). Cure shrinkages are measured by TMA within a temperature range of $140{\sim}240^{\circ}C$ in a nitrogen atmosphere, and degree of cure determined by the heat of reaction using dynamic and isothermal DSC runs in argon atmosphere. As a result, the cure shrinkage is increased dramatically in a degree of cure range between 27~80%. the higher the cure temperature, the lower the degree of cure occurring to begin cure shrinkage.