DOI QR코드

DOI QR Code

Kinetic Analysis of Energetic Materials Using Differential Scanning Calorimetry

DSC를 이용한 고에너지 물질의 반응속도식 추출과 활용

  • Kim, Yoocheon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Jungsoo (4th R&D Institute-2, Agency for Defense Development) ;
  • Yang, Seungho (Defense R&D center, Hanwha Corporation) ;
  • Park, Honglae (Fire Power Technical Team, Defense Industry Technology Center) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2014.11.13
  • Accepted : 2015.01.15
  • Published : 2015.02.01

Abstract

The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented on $B/KNO_3$ for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

DSC 실험 데이터를 이용하여 고에너지 물질의 반응속도식을 추출해내는 이론적 방법을 제안하고 알루미늄 고함유 화약(RDX/HTPB/Al)에 대한 반응속도식 추출을 수행하였다. DSC 실험 결과는 Friedman 등전환법으로 분석되며 AKTS software를 사용하였다. 질량분율에 따른 활성화에너지와 빈도인자를 추출해 내어 반응속도식을 완성하였다. 추출된 반응속도식은 기존의 ODTX 실험을 통해 추출되는 화학반응속도식 형태에 비해 이론적 측면과 정확성 측면에서 상당한 장점을 갖는다. 추출된 반응속도식의 검증을 위해 화학반응률 그리고 생성물 질량분율에 대해 DSC 실험과 동일한 조건하에서 전산모사를 수행하였으며 실험값과 잘 일치함을 확인하였다. 또한 붕소 질산칼륨($B/KNO_3$)에 대한 완속가열 전산모사를 수행하였으며 실험결과와 비교하여 DSC 반응속도식의 전산모사에의 적용가능성을 확인하였다.

Keywords

References

  1. McClelland, M.A., Maienschein, J.L., Nichols, A.L., Wardell, J.F., Atwood, A.I. and Curran, P.O., "ALE3D Model predications and Materials Characterization for the Cookoff Response of PBXN-109," Joint Army Navy NASA Air force 38th Combustions Subcommittee, Destin, FL, U.S.A., pp. 1-15, April 2002.
  2. Kaneshige, M.J., Renlund, A.M., Schmitt, R.G. and Erikson, W.W., "Cook-Off Experiments For Model Validation At Sandia National Laboratories," The 12th international Detonation Symposium, Albuquerque, NM, U.S.A., 87185, 2002.
  3. Yoh, J.J., McClelland, M.A., Maienschein, J.L., Wardell, J.F. and Tarver, C.M., "Simulating thermal explosion of RDX-based explosives: Model comparison with experiment," Journal of Applied Physics, Vol. 97, No. 8, 083504, 2005. https://doi.org/10.1063/1.1863429
  4. Friedman, H.L., "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic," Journal of Polymer Science, Vol. 6, No. 1, pp. 183-195, 1963.
  5. Roduit, B., Borgeat, Ch., Berger, B., Folly, P., Andres, H., Schadeli, U. and Vogelsanger, B., "Up scaling of DSC Data of High Energetic Materials Simulation of Cook Off Experiments," Journal of Thermal Analysis and calorimetry, Vol. 85, No. 1, pp. 195-202, 2006. https://doi.org/10.1007/s10973-005-7388-y
  6. Roduit, B., Folly, P., Berger, B., Mathieu, J., Sarbach, A., Andres, H., Ramin, M. and Vogelsanger, B., "Evaluating SADT by Advanced Kinetics-based Simulation Approach," Journal of Thermal Analysis and calorimetry, Vol. 93, No. 1, pp. 153-161, 2008. https://doi.org/10.1007/s10973-007-8865-2
  7. Meyer, W. and Neldel, H., "Relation Between the Energy Constant and the Quantity Constant in the Conductivity-Temperature Formula of Oxide Semiconductors," Zeitschrift fur technische Physik, Vol. 18, No. 12, pp. 588, 1937.