• Title/Summary/Keyword: Differential positioning

Search Result 236, Processing Time 0.024 seconds

Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements

  • Yigit, Cemal O.;El-Mowafy, Ahmed;Bezcioglu, Mert;Dindar, Ahmet A.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.427-436
    • /
    • 2020
  • The use of final IGS precise orbit and clock products for high-rate GNSS-PPP proved its effectiveness in capturing dynamic displacement of engineering structures caused by earthquakes. However, the main drawback of using the final products is that they are available after approximately two weeks of data collection, which is not suitable for timely measures after an event. In this study, the use of ultra-rapid products (observed part), which are available after a few hours of data collection, and rapid products, which are available in less than 24 hrs, are investigated and their results are compared to the more precise final products. The tests are designed such that harmonic oscillations with different frequencies and amplitudes and ground motion of a simulated real earthquake are generated using a single axis shake table and the PPP was used to capture these movements by monitoring time-change of the table positions. To evaluate the accuracy of PPP using ultra-rapid, rapid and final products, their results were compared with relative GNSS positioning and LVDT (Linear Variable Differential Transformer) data, treated as reference. The results show that the high-rate GNSS-PPP solutions based on the three products can capture frequencies of harmonic oscillations and dynamic displacement with good accuracy. There were slight differences between ultra-rapid, rapid and final products, where some of the tested events indicated that the latter two produced are more accurate and provide better results compared to the ultra-rapid product for monitoring short-term dynamic displacements.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Analysis on the Performance Degradations of Chung-Ju DGPS Reference Station by Radio Environment (전파환경에 의한 DGPS 충주 기준국의 성능저하 분석)

  • Park, SulGee;Han, YoungHoon;Park, SangHyun;Choi, YongKwon;Lee, Sang Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1822-1829
    • /
    • 2016
  • DGPS Reference station is established in Korea for improvement of GPS navigation accuracy and needs of integrity. Recently, DGPS stations provide user positioning information on land as well as ocean. However, this paper investigated visibility and interference environment for performance degradation of Chung-ju DGPS reference station. In case of Young-do reference station, visibility and interference environment were satisfied with reference standard. In case of Chung-ju reference station, visibility was satisfied with 7 degree elevation angle. However, interference environment was not satisfied with reference standard of -50dBm. This paper proposed time differential measurement analysis method excluding error of signal noise for analyzing measurement error. Chung-ju reference station measurement analysis result is three times the error than on Young-do in Dec, 2015. In addition, this paper has confirmed measurement performance degradations because of reference station equipment problem. Future study will be carried out performance analysis of 17 DGPS reference station.

A Study on the Development of Multifuntional Real-Time Inclination and Azimuth Measurement System (다용도 실시간 경사각과 방위각 연속 측정 시스템 개발연구)

  • Kim, Gyuhyun;Cho, Sung-Ho;Jung, Hyun-Key;Lee, Hyosun;Son, Jeong-Sul
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.588-601
    • /
    • 2013
  • In geophysics and geophysical exploration fields, we can use information about inclination and azimuth in various ways. These include borehole deviation logging for inversion process, real-time data acquisition system, geophysical monitoring system, and so on. This type of information is also necessarily used in the directional drilling of shale gas fields. We thus need to develop a subminiature, low-powered, multi-functional inclination and azimuth measurement system for geophysical exploration fields. In this paper, to develop real-time measurement system, we adopt the high performance low power Micro Control Unit (made with state-of-the-art Complementary Metal Oxide Semiconductor technology) and newly released Micro Electro Mechanical Systems Attitude Heading Reference System sensors. We present test results on the development of a multifunctional real-time inclination and azimuth measurement system. The developed system has an ultra-slim body so as to be installed in 42mm sonde. Also, this system allows us to acquire data in real-time and to easily expand its application by synchronizing with a depth encoder or Differential Global Positioning System.

A Time Comparison Measurement Technique for eLoran Receivers (시각비교를 위한 eLoran 수신기 지연측정 기술)

  • Lee, Chang-Bok;Lee, Jong-Koo;Lee, Young-Kyu;Hwang, Sang-wook;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.385-390
    • /
    • 2016
  • ELoran Systems can provide Position, Navigation, and Time services with comparable performance to Global Positioning Systems (GPS) as a back up or alternative system. High timing and navigation performance can be achieved by eLoran signals because eLoran receivers use "all-in-view" reception. This incorporates Time of Arrival (TOA) signals from all stations in the service range because each eLoran station is synchronized to Coordinated Universal Time (UTC). Transmission station information and the differential Loran correction data are transmitted via an additional Loran Data Channel (LDC) on the transmitted eLoran signal such that eLoran provides improved Position Navigation and Timing (PNT) over legacy Loran. In this paper, we propose a technique for adapting the delay time compensation values in eLoran timing receivers to provide precise time comparison. For this purpose, we have designed a system that measures time delay from the crossing point of the third cycle extracted from the current transformer at the end point of the transmitter. The receiver delay was measured by connecting an active H-field, an E-field and a passive loop antenna to a commercial eLoran timing receiver. The common-view time transfer technique using the calibrated eLoran timing receiver improved the eLoran transfer time. A eLoran timing receiver calibrated by this method can be utilized in the field for precise time comparison as a GNSS backup.

Development of Exercise Analysis System Using Bioelectric Abdominal Signal (복부생체전기신호를 이용한 운동 분석 시스템 개발)

  • Gang, Gyeong Woo;Min, Chul Hong;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.183-190
    • /
    • 2012
  • Conventional physical activity monitoring systems, which use accelerometers, global positioning system (GPS), heartbeats, or body temperature information, showed limited performances due to their own restrictions on measurement environment and measurable activity types. To overcome these limitations, we developed a portable exercise analysis system that can analyze aerobic exercises as well as isotonic exercises. For bioelectric signal acquisition during exercise, waist belt with two body contact electrodes was used. For exercise analysis, the measured signals were firstly divided into two signal groups with different frequency ranges which can represent respiration related signal and muscular motion related signal, respectively. After then, power values, differential of power values, and median frequency values were selected for feature values. Selected features were used as inputs of support vector machine (SVM) to classify the exercise types. For verification of statistical significance, ANOVA and multiple comparison test were performed. The experimental results showed 100% accuracy for classification of aerobic exercise and isotonic resistance exercise. Also, classification of aerobic exercise, isotonic resistance exercise, and hybrid types of exercise revealed 92.7% of accuracy.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

Methodology for Calculating Surrogate Safety Measure by Using Vehicular Trajectory and Its Application (차량궤적자료를 이용한 SSM 산출 방법론 개발과 적용사례 분석)

  • PARK, Seongyong;LEE, Chungwon;KHO, Seung-Young;LEE, Yong-Gwan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.323-336
    • /
    • 2015
  • Estimating the risks on the roadway using surrogate safety measures (SSM) has an advantage in that it focuses on the vehicle trajectory directly involved in conflicts. On the other hand, there is a restriction on estimating the risks of continuous segments due to the limited data collected from a location. To overcome the restriction, this study presents the scheme of acquiring the vehicular trajectory using real time kinematics-differential global positioning system (RTK-DGPS) and develops a methodology which contains the considerations of the problems to calculate the SSM such as time-to-collision (TTC), deceleration rate to avoid collision (DRAC) and acceleration noise (AN). By using the methodology, this study shows a result from an experiment executed in a section where the variation of vehicular movement can be observed from several continuous flow roadway sections near Seoul and Gyeonggi Province in Korea. The result illustrated the risks on the roadway by the SSM metrics in certain situations like merging and diverging, stop-and-go, and weaving. This study would be applied to relate the dangers with characteristics of drivers and roadway sections, and prevenst accidents or conflicts by detecting dangerous roadway sections and drivers' behaviors. This study contributes to improving roadway safety and reducing car-accidents.

Research on the Variation of Deposition & Accumulation on the Shorelines using Ortho Areial Photos (수치항공사진을 이용한 해안선 침퇴적변화에 관한 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Oh, Che-Young;Son, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • The border of the shorelines in a nation is an important factor in determining the border of a national territory, but Korea's shorelines are rapidly changing due to the recent rise in sea level from global warming and growth-centered economic policy over the decades of years. This research was done centering on the areas having well-preserved shorelines as they naturally are and other areas having damaged shorelines in their vicinities due to artificial structures at the two beaches located at the neighboring areas and having mutually homogeneous ocean conditions with each other. First, this research derived the shorelines using the aerial photographies taken from 1947 until 2007 and revised the tidal levels sounding data obtained from a hydrographical survey automation system consisting of Echosounder[Echotrac 3100] and Differential Global Positioning System[Beacon]by using topographical data and ships on land obtained by applying post-processing Kinematic GPS measuring method. In addition, this research evaluated the changes and dimensional variations for the last 60 years by dividing these determined shorelines into 5 sections. As a result, the Haewundae Beach showed a total of 29% decrease rate in dimension as of the year 2007 in comparison with the year 1947 due to a rapid dimensional decline centering on its west areas, while the dimension of the Gwanganri Beach showed an increase in its dimension amounting to a total of 69% due to the decrease in flow velocity by artificial structures built on both ends of the beach-forming accumulation; thus, it was found that there existed a big difference in deposition & accumulation tendency depending on neighboring environment in spite of the homogeneous ocean conditions.

  • PDF

An Environmental Analysis of Candidate SBAS Reference Station (위성기반 보강시스템 기준국 후보지의 환경 분석)

  • Han, Younghoon;Park, Sul Gee;Lee, Sangheon;Park, Sang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.685-688
    • /
    • 2016
  • SBAS(Satellite Based Augmentation System) broadcasts the correction message based on satellite communication to improve the positioning accuracy of GNSS user. For this reason, SBAS is actively being utilized on navigation part. To apply SBAS to navigation part, it should satisfy not only accuracy but also integrity, continuity, availability, coverage requirements and so on. Since SBAS reference station is the base infrastructure of SBAS, it is the main factor to determine the environment, position, and geometry of reference stations to achieve SBAS service performance. Therefore, a site environmental analysis should be performed prior to the selection of SBAS reference station. In this paper, it performs the environmental analysis of NDGPS(Nationwide Differential GPS) reference station sites on the premise that SBAS reference station will be co-operated in the same site of NDGPS operated by MOF(Ministry of Oceans and Fisheries). The environmental analysis is conducted as carrying out the visibility analysis of GPS satellite and interference analysis. This paper also presents the brief procedures and requirements for site survey of SBAS reference station.

  • PDF