• Title/Summary/Keyword: Differential Scanning Thermal Analysis

Search Result 334, Processing Time 0.025 seconds

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

Study on the Texture and Staling of Breads with Addition of Various Hydrocolloids (Hydrocolloids를 첨가한 식빵의 텍스쳐와 노화에 관한 연구)

  • Lee, Seung Ju;Cho, Sook-Kyung;Lee, Seung-Joo
    • Korean journal of food and cookery science
    • /
    • v.24 no.5
    • /
    • pp.636-644
    • /
    • 2008
  • The principal objective of this study was to assess the effects of hydrocolloids(xanthan gum, guar gum, sodium alginate, k-carrageenan, carboxy-methyl cellulose) on the suppression of retrogradation in the bread. The pasting properties of the doughs and the sensory properties were determined in the bread samples, to which xanthan gum, guar gum, sodium alginate, k-carrageenan, and CMC, were added at different ratios(0.2%, 0.6%, 1%). CMC and k-carrageenan with 0.6% level were selected for the further retrogradation studies. Changes in the firmness of the bread samples at room temperature for 15 days were assessed using a texture analyzer, and the type of retrogradation was calculated via the Avrami equation. The thermal properties of the samples were also determined via differential scanning calorimetry (DSC). The addition of hydrocolloids was shown to increase the viscosities of the doughs. Setback and breakdown viscosity were reduced significantly via the addition of CMC(0.6%, 1%), xanthan gum(1%), and k-carrageenan(1%). Sensory hardness was significantly increased when 1% hydrocolloids were added. Our textural analysis showed that the addition of CMC reduced the firmness of the bread, whereas k-carrageenan didn't. However, the retrogradation rate was reduced via the addition of k-carrageenan, as was also demonstrated in the results of our DSC analysis.

A STUDY ON THE PHYSICAL PROPERTIES AND VOLUMETRIC STABILITY OF SR-IVOCAP RESIN SYSTEM (SR-Ivocap resin system의 물리적 특성과 체적 안정성에 관한 연구)

  • Eun, Sung-Sik;Kweon, Hyeog-Sin;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.453-467
    • /
    • 1998
  • This study helps to clarify conflicting reports by comparing the physical properties and accuracy of complete denture processed by the pack and press technique, continuous- pressure injection technique(SR-Ivocap system) and Mark press technique. The 6 different specimens have been evaluated using the SEM, Impact test, DSC (Differential Scanning Calorimetry) and DMTA (Dynamic Mechanical Thermal Analysis). Each sample was made of SR-Ivocap resin and QC-20 resin by different processing methods. The results were as follows ; 1. As the result of the observation on the fracture surface of resin by use of SEM, sample SR-Ivocap resin cured by continuous pressure injection method showed the most homogeneous structure. This is why molecules in SR-Ivocap resin have no orientation. 2. As the result of the Impact test in order to measure the deformity, fracture energy and impact resistance of resin, the samples with QC-20 acrylic resin and SR-Ivocap resin cured by continuous pressure injection method were exellent. 3. In consequence of measuring ${\alpha}$-glass transition temperature by use of DSC on the basis of temperature change, the glass transition temperatures of sample QC-20 resin cured by pack and press method and sample SR-Ivocap resin cured by continuous pressure injection method were very similar. Thus volumetric stability could not be evaluated only by glass transition temperature. 4. In comparing volumetric stability data by DMTA, the glass transition temperature(Tg) showed $137.88^{\circ}C$ at sample QC-20 resin cured by pack and press method and $139.78^{\circ}C$ at sample SR-Ivocap resin cured by continuous pressure injection method. Therefore sample SR-Ivocap resin cured by continuous pressure injection method seems to be superior to sample QC-20 resin cured by pack and press method in the dimensional stability at high temperature. 5. In comparing storage modulus data by DMTA, the storage modulus of sample SR-Ivocap resin cured by continuous pressure injection method was higher than that of sample QC-20 resin cured by pack and press method. So. sample SR-Ivocap resin cured by continuous pressure injection method seems to be superior to sample QC-20 resin cured by pack and press method in impact strength.

  • PDF

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Synthesis and Properties of Hyperbranched Liquid Crystalline Polyesters by Direct Polycondensation (직접중축합법에 의한 하이퍼브랜치 액정 폴리에스터의 합성 및 성질)

  • Park, Jong-Ryul;Kim, Hye-Mi;Yoon, Doo-Soo;Sohn, Jeong Sun;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.237-244
    • /
    • 2017
  • Hyperbranched liquid crystalline polymers with azomesogenic and cholesteryl groups in their terminal positions were designed and synthesized by direct polycondensation reaction. The chemical structures and thermal and mesomorphic properties of the synthesized polymers were investigated by FT-IR, $^1H-NMR$, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and polarizing optical microscopy (POM). The inherent viscosities (${\eta}_{inh}$) of the polymers were measured to be between 0.30 and 0.50 dL/g in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane (25/40/35 = w/w/w). The degree of branching (DB) in these polymers ranged from 0.37 to 0.75; they, as amorphous polymer, showed glass transition temperatures ranging from 80 to $120^{\circ}C$; the polymers readily dissolved in most of the organic solvents used in the experiments. Only hyperbranched polymers with a cholesteryl group as their mesogenic group showed liquid crystalline phases.

Physicochemical Properties of Methyl Linoleate Oxidized at Various Temperatures (온도에 따라 산화된 Methyl Linoleate의 물리화학적 특성)

  • Kim, In-Hwan;Kim, Chul-Jin;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.600-605
    • /
    • 1999
  • Methyl linoleate was oxidized at 60, 90, 120 and $150^{\circ}C$, respectively, with sparging oxygen for different periods of time. On the basis of the peroxide values determined at four temperatures, four heating times were chosen for the analysis of physicochemical parameters, such as peroxide value, total oxidation products, polymer content, viscosity, refractive index and characteristics of thermal degradation by DSC (Differential Scanning Calorimeter). The content of peroxide linkage (C-O-O-C) polymer and ether or carbon to carbon linkage (C-O-C/C-C) polymer were analyzed by High Performance Size Exclusion Chromatography (HPSEC). The polymer formed at four temperatures was qualitatively identified as dimer. The polymer with peroxide linkage (C-O-O-C) were detected from methyl linoleate oxidized at $60^{\circ}C\;and\;90^{\circ}C$, but they were not detected from methyl linoleate oxidized at $120^{\circ}C\;and\;150^{\circ}C$. The enthalpy changes increased as peroxide value increased whereas maximum degradation temperature decreased. The highest correlation coefficients were obtained between maximum degradation temperature $(T_m)$, exothermic enthalpy changes and peroxide value, peroxide linkage (C-O-O-C) polymer content.

  • PDF

The Optical Properties of B2O3-Bi2O3-PbO-SiO2 Glass System (B2O3-Bi2O3-PbO-SiO2계 유리의 광학적인 특성)

  • Joung, Maeng Sig;Kim, Hong Seon;Lee, Su Dae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2000
  • Four glasses of $B_2O_3-Bi_2O_3-PbO-SiO_2$ (BBPS) system were prepared by melting the appropriate amounts of reagent grade oxides of $B_2O_3$, $Bi_2O_3$, PbO, and $SiO_2$ in an open crucible. The differential thermal analysis showed crystallization temperature decreased with increasing $Bi_2O_3$ or PbO content in the sample. The structures of glasses system were studied using scanning electron microscopy and Fourier transform-Infra red (FT-IR) spectroscopy. The UV cut-off and refractive index were found to be sensitive to the $Pb^{+2}$ and $Bi^{+3}$ content in the glasses. The behavior of the IR spectra of the glasses in the BP series was consistent with a role of $Bi_2O_3$ as a network former. In the BP series of glasses, the result of IR spectrum indicated that PbO behaved as a network former.

  • PDF

Mechanical Properties of PVC Complexes Using Waste-Gypsum (I) (폐석고를 활용한 PVC 복합체 수지의 기계적 물성 (I))

  • Ho, Dong-Su;Park, Young-Hoon;Nah, Jae-Woon;Choi, Chang-Yong;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • In this study, mechanical properties of PVC complexes containing the gypsum (Namhae Chemical Co.) which contains phosphte, CaO, etc., Pb-species stabilizer, and $CaCO_3$ were investigated as a function or the content. As a result, mechanical properties increased when the gypsum was mixed with PVC at the extent of 8.46wt%. From this result, it is suggested that the gypsum containing phosphate and CaO is compatible with PVC. Thermogravimetric analysis(TGA) showed that pyrolysis started about at $275^{\circ}C$, and residual weight(%) increased with the amount of the gypsum, and differential scanning calorimetry (DSC) showed that $T_m,\;T_g$ had the maximum and minimum value respectively when the gypsum was mixed with PVC at the extent of 8.46wt%. Comparing all the results, both mechanical and thermal properties of PVC complex were improved. The X-ray diffraction measurement also showed their blonds and structures.

Effect of heat treatment on physicochemical properties of soybean (열처리 방법에 따른 대두의 이화학적 특성 변화)

  • Kim, Sun Hee;Jung, Eun Suk;Kim, So Young;Park, Shin Young;Cho, Yong Sik
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.820-826
    • /
    • 2017
  • Soybean is one of the most common food materials for making traditional Korean foods such as soybean paste, soy source and soy snack, and their manufacturing processes include heat treatment of soybean. This study was carried out to investigate the effect of heat treatment on the physicochemical properties of soybean. All samples were heat treated under commercial steamed, puffed or air-fried conditions, and then the protein molecular weight distribution, thermal properties, fluorescence intensity, protein solubility, and water and oil holding ability of the heat treated soybeans were examined. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that heat treatment caused fragmentation of polypeptide chain in soybean, showing the band of low molecular ranging from 17 to 40 kDa. The differential scanning calorimetric analysis showed the decrease of enthalpy values (${\Delta}H$) by heat treatment. Fluorescence spectroscopy indicated that the heat treatment caused lipid oxidation as proved by increasing emission intensity. The protein solubility at pH 3-6, and water holding capacity of heat treated soybeans were the higher than no treatment. These results suggest that the heat treatment resulted in decreased enthalpy values, and increased protein degradation, lipid oxidation and water affinity of soybean. Moreover, the effect of heat treatment on physiochemical properties of soybeans was more significant under air-fried condition.

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.