• Title/Summary/Keyword: Differential GPS

Search Result 203, Processing Time 0.024 seconds

Quality Test and Control of Kinematic DGPS Survey Results

  • Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.75-80
    • /
    • 2002
  • Depending upon geographical features and surrounding errors in the survey field, inaccurate positioning is inevitable in a kinematic DGPs survey. Therefore, a data inaccuracy detection algorithm and an interpolation algorithm are essential to meet the requirement of a digital map. In this study, GPS characteristics are taken into account to develop the data inaccuracy detection algorithm. Then, the data interpolation algothim is obtained, based on the feature type of the survey. A digital map for 20km of a rural highway is produced by the kinematic DGPS survey and the features of interests are lines associated with the road. Since the vertical variation of GPS data is relatively higher, the trimmed mean of vertical variation is used as criteria of the inaccuracy detection. Four cases of 0.5%, 1%, 2.5% and 5% trimmings have been experimented. Criteria of four cases are 69cm, 65cm, 61cm and 42cm, respectively. For the feature of a curved line, cublic spine interpolation is used to correct the inaccurate data. When the feature is more or less a straight line, the interpolation has been done by a linear polynomial. Difference between the actual distance and the interpolated distance are few centimeters in RMS.

  • PDF

Method for Detection and Identification of Satellite Anomaly Based on Pseudorange (의사거리 기반 위성 이상 검출 및 식별 기법)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Jang, Won-Seok;Kim, Young-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.328-333
    • /
    • 2012
  • Current differential GPS (DGPS) system consists of reference station (RS), integrity monitor (IM), and control station (CS). The RS computes the pseudorange corrections (PRC) and generates the RTCM messages for broadcasting. The IM receives the corrections from the RS broadcasting and verifies that the information is within tolerance. The CS performs realtime system status monitoring and control of the functional and performance parameters. The primary function of a DGPS integrity monitor is to verify the correction information and transmit feedback messages to the reference station. However, the current algorithms for integrity monitoring have the limitations of integrity monitor functions for satellite outage or anomalies. Therefore, this paper focuses on the detection and identification methods of satellite anomalies for maritime DGPS RSIM. Based on the function analysis of current DGPS RSIM, it first addresses the limitation of integrity monitoring functions for DGPS RSIM, and then proposes the detection and identification method of satellite anomalies. In addition, it simulates an actual GPS clock anomaly case using a GPS simulator to analyze the limitations of the integrity monitoring function. It presents the brief test results using the proposed methods for detection and identification of satellite anomalies.

Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots

  • Prema, K.;Kumar, N. Senthil;Dash, Subhransu Sekhar
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.352-362
    • /
    • 2014
  • In this paper, a fuzzy logic controller is designed for a DC motor which can be used for navigation control of mobile robots. These mobile robots can be used for agricultural, defense and assorted social applications. The robots used in these fields can reduce manpower, save human life and can be operated using remote control from a distant place. The developed fuzzy logic controller is used to control navigation speed and steering angle according to the desired reference position. Differential drive is used to control the steering angle and the speed of the robot. Two DC motors are connected with the rear wheels of the robot. They are controlled by a fuzzy logic controller to offer accurate steering angle and the driving speed of the robot. Its location is monitored using GPS (Global Positioning System) on a real time basis. IR sensors in the robot detect obstacles around the robot. The designed fuzzy logic controller has been implemented in a robot, which depicts that the robot could avoid obstacle as well as perform its operation efficiently with remote online control.

Development of Low-cost RTK Device base on LTE-M for Precise Location Positioning (정밀 위치 측위를 위한 LTE-M 기반의 저가형 RTK 단말 개발)

  • Park, Chul-sun;Park, Sung-kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.565-567
    • /
    • 2018
  • The rover acquires its own position information using satellites signals provided by several satellites(at least four or more). For the present, GNSS systems are widely used in various fields. However, there are many factors that cause accuracy errors in positioning between rovers and GNSS satellites. Due to satellite time error, orbit error, ionospheric & convective refraction, multipath, etc., rover can't acquire precise position. Differential GPS(DGPS) and Real-Time Kinematic(RTK) have been developed as compensation techniques to reduce such errors. In this paper, we intend to develop a terminal with RTK technique to acquire precise position information of mobile station.

  • PDF

Driving Burj Dubai Core Walls with an Advanced Data Fusion System.

  • Cranenbroeck, Joel Van;Hayes, Douglas McL;Sparks, Ian R
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.465-469
    • /
    • 2006
  • In recent years there has been considerable interest in the construction of super high-rise buildings. From the prior art, various procedures and devices for surveys during and after the phase of erection of a high-rise building are known. High-rise buildings are subject to strong external tilt effects caused, for instance, by wind pressures, unilateral thermal effects by exposure to sunlight, and unilateral loads. Such effects are a particular challenge in the phase of construction of a high-rise building, in as much as the high-rise building under construction is also subject to tilt effects, and will at least temporarily lose its - as a rule exactly vertical - alignment. Yet construction should progress in such a way that the building is aligned as planned, and particularly so in the vertical, when returning into an un-tilted basic state.It is essential that a straight element be constructed that theoretically, even when moving around its design centre point due to varying loads, would have an exactly vertical alignment when all biasing conditions are neutralised. Because of differential raft settlement, differential concrete shortening, and construction tolerances, this ideal situation will rarely be achieved. This paper describes a procedure developed by the authors using GPS observations combined with a network of precision inclination sensor to provide reliable coordinated points at the top of the worldwide highest-rise building under construction in Dubai.

  • PDF

Application of Differential GPS for the Displacement Measurement of Self-anchored Suspension Bridge under the Static and Dynamic Loading Cases (DGPS 기법을 이용한 자정식 현수교의 정동적 변위응답 측정 및 분석)

  • Kim, Hyung-Tae;Seo, Ju-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1126-1132
    • /
    • 2009
  • Bridge structures are designed to support ordinary loadings such as vehicles, wind, temperature and current as well as unexpected loadings like earthquakes and storm. Especially, the displacement of Flexible bridges like an suspension bridge under ordinary loading conditions is necessary to be monitored. In case of long span bridges, there are some difficulties in monitoring the displacement of center of the main span using traditional laser displacement sensors. In this study, the static and dynamic displacement responses due to vehicle loadings were measured by DGPS(differential global positioning system) technique. The displacement response data were compared with data obtained from traditional laser displacement sensors so that the static and dynamic behavior of the bridge under vehicle loadings was examined and the applicability of the displacement response measurement using DGPS technique was verified. The static and dynamic loading test for an self-anchored suspension bridge, So-rok Bridge, was performed using vehicles. The displacement response from DGPS technique and that from laser displacement sensors of the bridge monitoring system were compared. The amplitude of white noise from DGPS based measurement was about 7 mm and that of laser displacement sensor based measurement was about 3 mm. On the other hand, dynamic behavior of the center of main span from DGPS based measurement showed better agreement with influence line of the bridge than that from laser displacement sensors. In addition, there were some irregular and discontinuous variation of data due to the instability of GPS receivers or frequent appearance of GPS satellites. Post-processing via the reference station close to an observation post provided by NGII(National Geographic Information Institute) will be a counter-plan for these defects.

Development of AVL-GIS System Using IDGPS and Wireless Communication Techniques (IDGPS 와 무선통신을 이용한 AVL-GIS 시스템개발)

  • 안충현;양종윤;최종현
    • Spatial Information Research
    • /
    • v.7 no.2
    • /
    • pp.209-221
    • /
    • 1999
  • In this research, AVL-GIS(Automatic Vehicle Location System linked with Geographic Information System) system was developed using integration of core techniques of GIS engine written by Java language, GOS(Global Positioning System) and wireless telecommunication interfacing techniques. IDGPS(Inverted differential GPS) techniques was employed to estimate accurate position of mobile vehicle and to supervise their path from AVL-GLS control center system. Between mobile vehicle and AVL-GLS control center system which has spatial data analysis function, road network and rleate ddata base were connected wireless phone to communicate for position an dmessage in real time. The developed system from this research has more enhanced GIS functions rather than previous AVL oriented system which has MDT for message display and voice communication only. This system can support build-up application system such as fleet management like bus, taxi, truck, disaster and emergency and monitoring of transportation status for customer s order via web browser in filed of EC/CALS in low cost.

  • PDF

Architecture Design for Integration of Software RS and IM of Maritime DGPS Reference Station System (해양 DGPS 기준국 시스템의 소프트웨어 RS,IM 통합을 위한 아키텍처 설계)

  • Jang, Wonseok;Kim, Youngki;Seo, Kiyeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.282-288
    • /
    • 2014
  • The DGPS reference station is a national infrastructure generating GPS correctional information and transmitting the signal for Differential GPS. Currently, Korea has applied and operated the software-based DGPS reference station as a standard of the next generation proposed by the USCG in order to improve the hardware-based DGPS reference system. However, software-based DGPS reference station proposed by USCG was changed in software method, only for form. There is no advantage to changing software-based because the most critical part of architecture has not been improved. In this paper, we have designed a new software-based marine DGPS station architecture that a reference station software and a monitor station were integrated. The new marine DGPS station architecture based on software is a more simplified structure than it used to be and can be utilized in the DGPS reference station.

A Study on the DGPS Service Utilization for the Low-cost GPS Receiver Module Based on the Correction Projection Algorithm (위성배치정보와 보정정보 맵핑 알고리즘을 이용한 저가형 GPS 수신기의 DGPS 서비스 적용 방안 연구)

  • Park, Byung-Woon;Yoon, Dong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • This paper suggests a new algorithm to provide low-cost GPS modules with DGPS service, which corrects the error vector in the already-calculated position by projecting range corrections to position domain using the observation matrix calculated from the satellite elevation and azimuth angle in the NMEA GPGSV data. The algorithm reduced the horizontal and vertical RMS error of U-blox LEA-5H module from 1.8m/5.8m to 1.0m/1.4m during the daytime. The algorithm has advantage in improving the performance of low-cost module to that of DGPS receiver by a software update without any correction in hardware, therefore it is expected to contribute to the vitalization of the future high-precision position service infrastructure by reducing the costumer cost and vender risk.

Realtime Long-Distance Transmission Method of DGPS Error Correction Signal (DGPS 보정 신호 실시간 장거리 전송 방안)

  • 조익성;임재홍
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.243-251
    • /
    • 2001
  • GPS is one of today's most widely used surveying techniques. But, users can't acquire an enough accuracy in applications of the navigation or geodesy by the GPS positioning technique because of the effects of the ionosphere and troposphere. The solution of these restrictions in the DGPS technique that is to eliminate the common errors and can achieve a high accuracy. Although of sufficient density for good DGPS, accuracy of positioning is just not dense enough to provide complete coverage for real-time positioning, because distances between base and rover is short. In this paper, we suggest Realtime Long-Distance Transmission Method of DGPS Error Correction Signal, which consist of TCP, UDP and IP, which allows a user to increase the distance at which the rover receiver is located from the base, due to radio modem.