• Title/Summary/Keyword: Different Magnetic Property

Search Result 83, Processing Time 0.026 seconds

A Study on Structure and Magnetic Properties of Fe-N Thin Films with Different DC Magnetron Sputtering Power and Time (증착 Power의 세기와 시간에 따른 Fe-N 박막의 구조와 자성 특성)

  • Han, Dong-Won;Park, Won-Uk;Kim, Jong-Woo;Kwon, Ah-Ram
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • Due to the high saturation magnetization (~2.4 T), $Fe_{16}N_2$ is interesting for the thin film application such as an actuator, data record storage and sensor etc. In this study, Fe-N thin films were deposited on Si(001) substrate with various power and deposition time by DC magnetron sputtering, in order to get high portion of $Fe_{16}N_2$ phase. Surface morphology, phase formation and magnetic properties were measured. As a result, Saturation magnetization and Remanence magnetization reach to ~2.45 T and 1.41T. But, Coercivity was not enough in this experiments. Its value lower than 100 Oe. Which is very close to theoretical value.

Microstructure and Mechanical Property of Ti-Mn-Cu Alloys with Magnetic Pulsed Compaction (자기펄스성형이 적용된 Ti-Mn-Cu 합금의 미세구조 및 기계적 특성)

  • Yun, Ye Jun;Park, Chun Woong;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti-Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.

A STUDY ON THE PHYSICAL PROPERTIES AND BIOLOGICAL CHARACTERISTICS OF DENTAL MAGNETIC ATTACHMENTS (치과용 자석부착장치의 물리적, 생물학적 특성에 관한 연구)

  • Lim, Yong-Sik;Kim, Yung-Soo;Kim, Chang-Whe;Kim, Yong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.1-22
    • /
    • 1999
  • In order to investigate various physical and biological properties of dental magnetic attachments studies on retentive characteristics, corrosion properties, cytotoxicity of different magnetic systems for dental applications were done. For the study of retentive characteristics changes of retentive force by increasing air gap, wear properties of various attachment systems and loss of magnetic force by heat treatment were measured. Forte study of corrosion property of magnet covering metal electrochemical corrosion was done in artificial saliva and 0.9% NaCl solution between $-1,000mV_{SCE}\;and\;+1,000mV_{SCE}$. Anodic polarization curves are obtained about 6 types of samples and 2 types of solution. Corroded surfaces were examined with metallurgical microscope, scanning electron microscope and surface profilometer. For the study of cytotoxicity of magnetic attachment and its field cell growth and agar overlay test were done. The results of this study were as follows. 1. In Magnetic attachments using closed circuit retentive force at zero air gap was greater than magnets using open circuit, but decrease of retentive force by increasing air gap was also greater than open systems. 2. After 40,000 cycles of wear test all mechanical attachment resulted in varing degree of retention loss but in magnetic attachments no loss of retentive force was observed. 3. The magnetic attachment using Neodymium magnet showed early loss of retentive force about $200^{\circ}C$ but attachment using Samarium magnet showed some resistance to heat treatment and complete retention loss was observed about $500^{\circ}C$. The keeper was not influenced by heat treatment in retention. 4. In electrochemical corrosion test Dyna magnetic attachment covering metal showed the highiest corrosion resistance and Shiner magnet covering metal showed the least corrosion resistance and examination of corroded surface with metallurgical microscope, scanning electron micro-scope and surface profilometer also showed same results with anodic polarization corves. 5. The result of cell culture tests on the magnet covered with metal showed least recognizable cytotoxicity.

  • PDF

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Identification of Loliolide with Anti-Aging Properties from Scenedesmus deserticola JD052

  • Dae-Hyun Cho;Jin-Ho Yun;Jina Heo;In-Kyoung Lee;Yong-Jae Lee;Seunghee Bae;Bong-Sik Yun;Hee-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1250-1256
    • /
    • 2023
  • Herein, different extracts of Scenedesmus deserticola JD052, a green microalga, were evaluated in vitro as a potential anti-aging bioagent. Although post-treatment of microalgal culture with either UV irradiation or high light illumination did not lead to a substantial difference in the effectiveness of microalgal extracts as a potential anti-UV agent, the results indicated the presence of a highly potent compound in ethyl acetate extract with more than 20% increase in the cellular viability of normal human dermal fibroblasts (nHDFs) compared with the negative control amended with DMSO. The subsequent fractionation of the ethyl acetate extract led to two bioactive fractions with high anti-UV property; one of the fractions was further separated down to a single compound. While electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy analysis identified this single compound as loliolide, its identification has been rarely reported in microalgae previously, prompting thorough systematic investigations into this novel compound for the nascent microalgal industry.

Preparation of nickel Plating solution and the characteristics of deposition with complexents (무전해 니켈 도금액 제조와 복합제에 따른 도금 특성)

  • Jung, Seung-Jun;Park, Jong-Eun;Son, Won-Keun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.909-911
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed circuit boards (PCB) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor metals, such as Al and Cu, and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure, wear resistance, corrosion protection and thermal stability. In this study fundamental aspects of electroless nickel deposition were studied with effect of complexeing agents of different kinds. Then, the property of electroless deposit are controlled by the composition of the deposition solution, the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

Enhancement for Magnetic Property of Ba-ferrite for Perpendicular Magnetic Recording Using Ultrasonic Dispersion (초음파 분산에 의한 수직자기기록용 Ba-ferrite의 자기적 특성 향상)

  • Choi, Hyun-Seung;Kim, Chang-Gon;Jang, Hak-Jin;Jung, Ji-Hyung;Yoon, Seog-Young;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.758-763
    • /
    • 2002
  • The various ultrasonic energies (28 kHz, 40 kHz, 70 kHz) were used to improve the magnetic properties of Ba-ferrite as the perpendicular magnetic recording materials. In the sheet formation process, the different orientation hars were used to orientate perpendicularly the dispersed Ba-ferrite to sheet. Throughout these experiments, we have obtained relatively higher value of S. Q. (Squreness Ratio : 0.783) and O. R. (Orientation Ratio : 2.87) magnetic properties at 2 h ultrasonic treatment of 40 kHz ultrasonic energy. With aid of SEM(Scanning Electron Microscopy) images, the obtained sheet with dispersed of Ba-ferrite could be used for perpendicular magnetic recording due to orientated to easy magnetization axis, c-axis. In addition, the value of S. Q. of sheet decreased with increasing applied magnetic field angle during measuring of S. Q. value with changing applied magnetic field angle by VSM (Vibrating Sample Magnetrometer). This result also induced the probability for prependicular magnetic recording.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF