DOI QR코드

DOI QR Code

Microstructure and Mechanical Property of Ti-Mn-Cu Alloys with Magnetic Pulsed Compaction

자기펄스성형이 적용된 Ti-Mn-Cu 합금의 미세구조 및 기계적 특성

  • Yun, Ye Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University) ;
  • Choi, Won June (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 윤예준 (서울과학기술대학교 신소재공학과) ;
  • 박천웅 (한양대학교 신소재공학과) ;
  • 최원준 (한양대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과)
  • Received : 2021.01.22
  • Accepted : 2021.02.04
  • Published : 2021.02.28

Abstract

Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti-Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.

Keywords

References

  1. K.-H. Frosch and K. M. Sturmer: Eur. J. Trauma, 32 (2006) 148.
  2. A. K. Shukla, R. Balasubramaniam and S. Bhargava: J. Alloys Compd., 389 (2005) 144. https://doi.org/10.1016/j.jallcom.2004.08.005
  3. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mater. Sci. Eng. A, 243 (1998) 244. https://doi.org/10.1016/S0921-5093(97)00808-3
  4. A. A. Mazhar, F. El-Taib Heakal and A. G. Gad-Allah: Corrosion, 44 (1988) 705. https://doi.org/10.5006/1.3584933
  5. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato and M. Niinomi: J. Marer. Sci., 19 (2008) 1581.
  6. M. Niinomi: Mater. Sci. Eng. A, 243 (1998) 231. https://doi.org/10.1016/S0921-5093(97)00806-X
  7. W. Zhou, M. Souissi, T. Abe, R. Sahara, P. H.-L. Sit and K. Tsuchiya: Calphad, 71 (2020) 8.
  8. Y. Zhang, D. Sun, J. Cheng, J. K. H. Tsoi and J. Chen: Regen. Biomater., 7 (2020) 120.
  9. Y. Peng, Q. Zhu, T. Luo and J. Cao: Solid State Commun., 318 (2020) 1.
  10. P. F. Santos, M. Niinomi, K. Cho, M. Nakai, H. Liu, N. Ohtsu, M. Hirano, M. Ikeda and T. Narushima: Acta Biomater., 26 (2015) 366. https://doi.org/10.1016/j.actbio.2015.08.015
  11. J. Y. Choi, C. J. Chung, K. T. Oh, Y. J. Choi and K. H. Kim: Korean J. Dent. Mater., 35 (2008) 329.
  12. E. Zhang, F. Li, H.Wang, J. Liu, C. Wang, M. Li and K. Yang: Mater. Sci. Eng. C, 33 (2013) 4280. https://doi.org/10.1016/j.msec.2013.06.016
  13. F. Zhang , A. Weidmann, B. J. Nebe and E. Burkel: J. Phys. Conf. Ser., 144 (2009) 012007. https://doi.org/10.1088/1742-6596/144/1/012007
  14. M. Alqattan, Y. Alshammari, F. Yang, L. Peters and L. Bolzon: J. Mater. Res. Technol., 10 (2021) 1020. https://doi.org/10.1016/j.jmrt.2020.12.044
  15. M. Alqattan, L. Peters, Y. Alshammari, F. Yang and L. Bolzoni: Regen Biomater, rbaa050 (2020) 1.
  16. Y. Hirooka: J. Vac. Sci. Technol. A, 2 (1984) 16. https://doi.org/10.1116/1.572617
  17. J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel and P. L. Lee: J. Am. Chem. Soc., 125 (2003) 10684. https://doi.org/10.1021/ja0301673
  18. H. E. Lee, Y. S. Kim and S. T. Oh: J. Korean Powder Metall. Inst., 24 (2017) 41. https://doi.org/10.4150/KPMI.2017.24.1.41
  19. R. S. Martinez, J. P. Alvarez, I. Farias, D. B. Barcenas, M. Flores, J. Chavez, L. Olmos and O. Jimenez: Mater. Lett., 277 (2020) 128382. https://doi.org/10.1016/j.matlet.2020.128382
  20. K. Kawahara, Y. Kaneno, A. Kakitsuji and T. Takasugi: Intermetallics, 17 (2009) 938. https://doi.org/10.1016/j.intermet.2009.04.004
  21. Y. L. Kao, G. C. Tu, C. A. Huang and T. T. Liu: Mater. Sci. Eng. A, 398 (2005) 93. https://doi.org/10.1016/j.msea.2005.03.004
  22. T. Yoshimura, T. Thrirujirapaphong, H. Imai and K. Kondoh: Mater. Sci. Forum, 654-656 (2010) 815. https://doi.org/10.4028/www.scientific.net/MSF.654-656.815