Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.6.891

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core  

Eyvazian, Arameh (Mechanical and Industrial Engineering Department, College of Engineering, Qatar University)
Hamouda, Abdel Magid (Mechanical and Industrial Engineering Department, College of Engineering, Qatar University)
Tarlochan, Faris (Mechanical and Industrial Engineering Department, College of Engineering, Qatar University)
Mohsenizadeh, Saeid (School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Dastjerdi, Ali Ahmadi (Mechanical Engineering Department, Delft University of Technology)
Publication Information
Steel and Composite Structures / v.33, no.6, 2019 , pp. 891-906 More about this Journal
Abstract
This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.
Keywords
vibration and loss factor analysis; sinusoidal shear deformation theory; visco-piezoelectric structure; PD controller; magnetorheological fluid; graphene platelets;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Katariya, P.V. and Panda, S.K. (2019a), "Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0   DOI
2 Katariya, P.V. and Panda, S.K. (2019b), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y   DOI
3 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
4 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory", J. Sandw. Struct. Mater., 1099636217728420. https://doi.org/10.1177/1099636217728420
5 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircraf. Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/ AEAT-05-2016-0087   DOI
6 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Tech., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016   DOI
7 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x   DOI
8 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032   DOI
9 Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017a), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mat., 1-25. https://doi.org/10.1177/1099636217731071   DOI
10 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1177/1099636217720373   DOI
11 Lall, A.K., Asnani, N.T. and Nakra, B.C. (1987), "Vibration and Damping Analysis of Rectangular Plate With Partially Covered Constrained Viscoelastic Layer", J. Vib. Acoust. Stress Reliab., 109(3), 241-247. https://doi.org/10.1115/1.3269427   DOI
12 Nguyen, T.-K., Thai, T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. http://dx.doi.org/10.12989/scs.2015.18.1.091   DOI
13 Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66-67, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004   DOI
14 MalekzadehFard, K., Gholami, M., Reshadi, F. and Livani, M. (2015), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mat., 19(4), 397-423. https://doi.org/10.1177/1099636215603034   DOI
15 Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409   DOI
16 Navazi, H.M., Bornassi, S. and Haddadpour, H. (2017), "Vibration analysis of a rotating magnetorheological tapered sandwich beam", Int. J. Mech. Sci., 122 308-317. https://doi.org /10.1016/j.ijmecsci.2017.01.016   DOI
17 Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2014), "Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core", Eur. J. Mech. A. Solids, 47, 143-155. https://doi.org/10.1016/j.euromechsol.2014.03.004   DOI
18 Oner, E., Yaylaci, M. and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333   DOI
19 Oveisi, A. and Nestorovic, T. (2016), "Transient Response of an Active Nonlinear Sandwich Piezolaminated Plate", Commun. Nonlin. Sci. Num. Sim., 45, 158-175. https://doi.org/10.1016/j.cnsns. 2016.09.012   DOI
20 Sadeghpour, E., Sadighi, M. and Ohadi, A. (2016), "Free vibration analysis of a debonded curved sandwich beam", Eur. J. Mech. A. Solids, 57, 71-84. https://doi.org/10.1016/j.euromechsol.2015.11.006   DOI
21 Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020   DOI
22 Abad, F. and Rouzegar, J. (2017), "An exact spectral element method for free vibration analysis of FG plate integrated with piezoelectric layers", Compos. Struct., 180 696-708. https://doi.org/10.1016/j.compstruct.2017.08.030   DOI
23 Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng Mech., Int. J., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069   DOI
24 Sekkal, M., Fahsi, B., Tounsi, A. and Hassan, S. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., 25, 389-401. http://dx.doi.org/10.12989/scs.2017.25.4.389   DOI
25 Sharma, A., Kumar, A., Susheel, C.K. and Kumar, R. (2016), "Smart damping of functionally graded nanotube reinforced composite rectangular plates", Compos. Struct., 155, 29-44. https://doi.org/10.1016/j.compstruct.2016.07.079   DOI
26 Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., Int. J., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629
27 Vescovini, R., D'Ottavio, M., Dozio, L. and Polit, O. (2018), "Buckling and wrinkling of anisotropic sandwich plates", Int. J. Eng. Sci., 130, 136-156. https://doi.org/10.1016/j.ijengsci.2018.05.010   DOI
28 Wang, B., Liu, Y. and Xiao, Z. (2001), "Dynamical modelling of the chain structure formation in electrorheological fluids", Int. J. Eng. Sci., 39(4), 453-475. https://doi.org/10.1016/S0020-7225(00)00054-9   DOI
29 Xu, J., Wang, P., Pang, H., Wang, Y., Wu, J., Xuan, S. and Gong, X. (2018), "The dynamic mechanical properties of magnetorheological plastomers under high strain rate", Compos. Sci. Technol., 159, 50-58. https://doi.org/10.1016/j.compscitech.2018.02.030   DOI
30 Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8   DOI
31 Yeh, J.-Y. (2011), "Free vibration analysis of rotating polar orthotropic annular plate with ER damping treatment", Composites Part B, 42(4), 781-788. https://doi.org/10.1016/j.compositesb.2011.01.023   DOI
32 Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mech., 227(6), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y   DOI
33 Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lancon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87 118-136. https://doi.org/10.1016/j.ijmecsci. 2014.05.014   DOI
34 Birinci, A., Adiyaman, G., Yaylaci, M. and Oner, E. (2015), "Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM", Latin Am. J. Solids Struct., 12(9), 1771-1789. http://dx.doi.org/ 10.1590/1679-78251574   DOI
35 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., Int. J., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241   DOI
36 Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., Int. J., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607   DOI
37 Yeh, J.-Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart. Mater. Struct., 22(3), 035010. https://doi.org/10.1088/0964-1726/22/3/035010   DOI
38 Yeh, J.-Y., Chen, J.-Y., Lin, C.-T. and Liu, C.-Y. (2009), "Damping and vibration analysis of polar orthotropic annular plates with ER treatment", J. Sound Vib., 325(1), 1-13. https://doi.org/10.1016/j.jsv.2009.02.047   DOI
39 Ying, Z., Chen, H. and Ni, Y. (2011), "Magnetorheological visco-elastomer and its application to suppressing microvibration of sandwich plates", Proceedings of SPIE - The International Society for Optical Engineering, 8409, 42. https://doi.org/10.1117/12.919835
40 Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mat., 1-26. https://doi.org/10.1177   DOI
41 Han, Y., Wang, P., Fan, H., Sun, F., Chen, L. and Fang, D. (2015), "Free vibration of CFRC lattice-core sandwich cylinder with attached mass", Compos. Sci. Technol., 118, 226-235. https://doi.org/10.1016/j.compscitech.2015.09.007   DOI
42 Chen, C.-S., Liu, F.-H. and Chen, W.-R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., Int. J., 23(3), 251-261. http://dx.doi.org/10.12989/scs.2017.23.3.251   DOI
43 Eshaghi, M., Sedaghati, R. and Rakheja, S. (2016), "Analytical and experimental free vibration analysis of multi-layer MR-fluid circular plates under varying magnetic flux", Compos. Struct., 157, 78-86. https://doi.org/10.1016/j.compstruct. 2016.08.024   DOI
44 Guth, D. and Maas, J. (2016), "Long-term stable magnetorheological fluid brake for application in wind turbines", J. Intellig. Mater. Syst. Struct., 27(15), 2125-2142. https://doi.org/10.1177/1045389X15624794   DOI
45 Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mat., 1-33. https://doi.org/10.1177/1099636217720373   DOI
46 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030   DOI
47 Jamali, M., Shojaee, T., Kolahchi, R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., Int. J., 22(3), 691-712. https://doi.org/10.12989/ scs.2016.22.3.691   DOI