• Title/Summary/Keyword: Diesel Particulate Filter Trap(DPF)

Search Result 19, Processing Time 0.019 seconds

An Investigation of the Effect of Diesel Particulate Filter for Heavy-duty Diesel Engine on Emission Reduction (디젤입자상물질 여과장치의 배기저감성능 효과 분석)

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.36-42
    • /
    • 2007
  • Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. In the Heavy Duty Diesel area, the Continuously Regeneration trap has been widely applied in the retrofit market. As the Special act for the improvement of air quality in the capital area, the retrofit program for DPF to used diesel vehicle has progressed favorably and there are currently over 1,000 of these DPF in use in retrofit applications in korea. These DPF comprise a specially formulated Diesel Oxidation Catalyst upstream of a DPF. The $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to evaluate exactly the DPF devices according to the regulation of DPF certificate test procedure for retrofit(ministry of environment(MOE) announcement NO. 2005-16). To do so the understand of that regulation like the standard of PM reduction rate is needed. In this study the test procedure including test cycle and BPT test condition was examined and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and seoul-10 mode test, no defect could be showed.

A Study on the Performance of the Diesel Particulate Filter made of Porous Metal with Fe-based Fuel Additive (Fe 첨가제를 적용한 금속분말 필터의 포집 및 재생 특성에 관한 연구)

  • Park, S.H.;Chun, K.M.;Cho, G.B.;Jeong, Y.I.;Park, Y.L.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.802-806
    • /
    • 2001
  • Diesel particulate trap is the most reliable system to reduce the particulate matters from diesel engine. Filter is the core component of DPF and ceramic monolith type is dominantly used, which is expensive and fragile relatively at thermal shock. Porous metal filter, which has superior thermal characteristics and low cost, was tested in order to analyze the regeneration performance by using with ferrocene additive. This filter showed the 72% filtration efficiency, additives itself diminished 48% of PM from engine out emission, and final PM reduction ratio of 89% was achieved by DPF system with D-13 test mode.

  • PDF

A Study on the Characteristics of Pressure Drop and Regeneration of a Porous Seramic Pellet Filter for Diesel Particulate Trap (다공성 세라믹 펠렛을 포집재로 사용하느 매연여과장치의 배압 및 재생 특성에 관한 연구)

  • Kim, Hong-Suk;Cho, Guy-Back;Kim, Jin-Hyun;Jeong, Young-Il;Jeong, In-Su;Park, Jai-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Diesel particulate trap is a core technology for the reduction of PM from diesel vehicles This study presents the features and the characteristics of DPF system when using pellet type filters. In comparison with wall-flow filter, the pellet filter has the advantages of cracking free during regeneration and shape flexibility. Experiments are conducted in a test bench simulated as diesel engine exhaust condition. Pressure drop and particle loading rate was compared by using two pellet filters having the porosity of 70% and 0%. Also its regeneration was tested.

  • PDF

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam (금속폼을 이용한 Partial DPF의 설계 및 전산유체해석 연구)

  • Yoon, Cheon-Seog;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • DPF(Diesel Particulate Filter)s have been used to reduce the most of PM(particulate matters) from the exhaust emissions of diesel engine vehicles. Metal foam is one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. It can be fabricated with various pore sizes and struct thickness and coated with catalytic wash-coats with low cost. In order to design metal foam filter and analyze the flow phenomena, pressure drop and filtration experiment are carried out. Partial DPF which has PM reduction efficiency of more than 50 % is designed in this paper. Also, CFD analysis are performed for different configurations of clean filters in terms of pressure drop, uniformity index, and velocity magnitude at face of filter. Filter thickness and the gap between front and rear filters are optimized and recommended for manufacturing purpose.

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine (대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.788-792
    • /
    • 2006
  • The test was conducted on an 8000cc heavy-duty turbo-charged heavy-duty diesel engine on which continuous regeneration DPF was installed in order to investigate regeneration characteristics fur DPF and engine performance under conditions of standard (430ppm) or ultra low sulfur diesel (50ppm) and the results were compared with each other. Exhaust emissions, CO, HC, NOx, PM and soot were investigated carefully and tested under D-13 and D-3 modes.

  • PDF

Computational Simulation by One-Dimensional Regeneration Model of Wall-Flow Monolith Diesel Particulate Filter Trap (벽-유동(Wall-Flow) 모노리스(Monolith) 디젤 입자상물질 필터 트랩의 재생모델에 의한 수치 시뮬레이션)

  • Kim, G.H.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.41-54
    • /
    • 1995
  • A mathematical model for wall-flow monolith ceramic diesel particulate filter was developed in order to describe the processes which take place in the filter during regeneration. The major output of the model comprises ceramic wall temperature and regeneration time(soot reduction). Various numerical tests were performed to demonstrate how the gas oxygen concentration, flow rate and the initial particulate trap loading affect the regeneration time and peak trap temperature. The model is shown to b in reasonable agreement with the published experimental results. This model can be applied to predict the thermal shock failure due to high temperature during combustion regeneration process.

  • PDF

Considerations on the Temperature Distributions and Gradients in the Filter During Regeneration in Burner Type Diesel Particulate Trap System (버너방식 DPF 시스템의 재생과정 중 발생하는 내부 온도분포 및 온도구 배에 관한 고찰)

  • 박동선;김재업;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.78-84
    • /
    • 1996
  • In order to eliminate TPM(Total Particulate Matter) from a diesel engine, we designed and developed a particulate trap system using a burner, which was named as AEFR(Active Exhaust Feeding Regeneration) system. We have considered the temperature distributions and gradients in the filter being regenerated according to regeneration control schemes Ⅰ, Ⅱ and Ⅲ. Schemes Ⅲ has shown the most desirable peak temperature and temperature gradients in AFER system. Finally, it was concluded that much lower peak temperature and temperature gradients in the filter could be obtained than that of other advanced research results by our AEFR system.

  • PDF

Characteristics of Simultaneous Removal of NOx and PM over a Hybrid System of LNT/DPF + SCR/DPF in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 LNT/DPF + SCR/DPF 하이브리드 시스템의 NOx 및 PM 동시저감 특성)

  • Kang, Wooseok;Park, Su Han;Choi, Byungchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-160
    • /
    • 2016
  • The market demand for diesel engine tends to increase in general passenger cars as well as commercial vehicles because of its advantages. However, to meet the vehicle emissions regulation which will be more stringent in the future, it is necessary to plurally apply all after-treatment technologies such as diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), lean NOx trap (LNT) and selective catalytic reduction (SCR), and so on. Accordingly, the exhaust after-treatment system for diesel vehicle requires the technology of minimizing the numbers of catalysts by integrating every individual catalysts. The purposes of this study is to develop hybrid exhaust after-treatment device system which simultaneously uses LNT/DPF and SCR/DPF catalyst concurrently reducing NOx and particulate matter (PM). As the results, the hybrid system with $NH_3$ generated at LNT/DPF working as a reducing agent of SCR/DPF catalyst, improving NOx conversion rate, was found to be more excellent in de-NOx performance than that in LNT/DPF alone system.