• Title/Summary/Keyword: Dielectric response

Search Result 197, Processing Time 0.024 seconds

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Pyroelectric Infrared Sensors using (Pb,La)TiO3/LiTaO3/(Pb,La)TiO3 Multilayer Ferroelectric Thin Films ((Pb,La)TiO3/LiTaO3/(Pb,La)TiO3 다층 강유전 박막을 이용한 초전형 적외선 센서)

  • Sung, Se-Kyoung;Lee, Du-Hyun;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2002
  • For fabrication of the pyroelectric IR sensor $(Pb,La)TiO_3(PLT)$/$LiTaO_3$/(LTO)/PLT ferroelectric thin films was deposited by rf magnetron sputtering followed by rapid thermal annealing and the crystallinity as a function of annealing temperature and time was investigated. Permittivity and dielectric loss factor of ferroelectric thin films as a function of c-axis preffered orientation was measured. Also pyroelectric coefficient of ferroelectric thin films with largest c-axis preffered orientation was measured and obtain figure of merit of voltage response($F_V$) and detectivity($F_D$). In this case $F_V$, $F_D$ was $5.63{\times}10^{-10}\;C{\cdot}cm/J$, $1.98{\times}10^{-8}\;C{\cdot}cm/J$, respectively.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체 다중제어에 관한 연구)

  • 김태형;김훈모
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.94-103
    • /
    • 2003
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirements. Therefore, in order to solve these problems. a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, powerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably ils shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuzzy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time. It caused for a sub-actuator to operate at the same time that a sub-actuator system operation increase with a functional improvement and control efficiency improvement in each actuator, hence it becomes very important to manage it effectively and to control the sub-system which Is operated effectively. There is a limitation on the management of Main-host system which has multiple sub-system, hence it brings out the Multi-Vehicle Control process that disperse the task efficiently. Controlling the multi-dispersion system efficiently, it needs the research of Main-host system's scheduling, data interchange between sub-actuators, data interchange between Main-host system and sub-actuator system, and data communication process. Therefore in this papers, we compared the fuzzy controller with the adaptive fuzzy controller. also, we applied the scheduling method for efficient multi-control in EP Actuator and the algorithm with interchanging data, protocol design.

Piezoelectric and Dielectric Properties on PSN-PMN-PZT Composition according to CeO2 Addition (PSN-PMN-PZT 조성의 CeO2첨가에 따른 압전.유전특성 변화)

  • Yoon, Man-Soon;Chio, Yong-Gil;Ur, Soon-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.838-842
    • /
    • 2006
  • 0.03Pb$(Sb_{0.5}Nb_{0.5})O_{3}-0.03Pb(Mn{1/3}Nb{2/3)O_{3}-(0.94-x)PbTiO_{3}-xPbZrO_{3}$ ceramics doped with $CeO_{2}$ were synthesized by conventional bulk ceramic processing technique. Phases analysis, microstructures and piezoelectric properties were investigated as a function of $CeO_{2}$ content (0.03, 0.05, 0.1 0.3, 0.5 and 0.7 wt%). Microstructures and phases information were characterized using a scanning electron microscope (SEM) and an X-ray diffractometer (XRD). Mechanical quality factor ($Q_{m}$) and coupling factor(kp) were obtained from the resonance measurement method. Both $Q_{m}$ and $k_{p}$ were shown to reach to the maximum at 0.1 wt% $CeO_{2}$. In order to evaluate the stability of resonance frequency and effective electromechanical coupling factor ($K_{eff}$) as a function of $CeO_{2}$, the variation of resonance and anti-resonance frequency were also measured using a high voltage frequency response analyzer under various alternating electric fields from 10 V/mm to 80 V/mm. It was shown that the stability of resonance frequency and effective electromechanical coupling factor were increased with increasing the $CeO_{2}$ contents.

Polyperiodic-hole-array Plasmonic Color Filter for Minimizing the Effect of Angle of Incidence (입사광각의 영향을 최소화한 다결정 주기 구멍 배열 플라즈모닉 컬러 필터의 설계)

  • Jeong, Ki Won;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.148-154
    • /
    • 2020
  • In this paper we propose a plasmonic color filter with a novel nanopattern. The suggested pattern, called a "polyperiodic hole array" (PPHA), is introduced to solve the angle dependence of the optical response that originates from the periodic structure. We set the diameter and period of the hole to make a green color filter, and set the unit-cell size and metal and dielectric thicknesses in consideration of the propagation length and skin depth. The periodic hole arrays are locally rotated to make a PPHA pattern, resulting in a globally aperiodic yet partially periodic pattern. As a result, compared to a general pattern, the PPHA nanostructured color filter has a maximum 40% improvement in spectral shift when the angle of incidence is increased from 0° to 30°. Transmittance reduction was also alleviated by 30%. This work will improve the performance of nanostructured color filters and help with nanotechnology being applied industrially to imaging devices, including displays and image sensors.

Feasibility Study for the Development of a Device for Pathological Tissue (병리학적 조직 진단장치 개발에 대한 타당성 분석 연구)

  • Ko Chea-Ok;Park Min-Young;Kim Jeong-Lan;Lee Ae-Kyoung;Choi Hyung-Do;Choi Jae-Ic;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.341-350
    • /
    • 2006
  • In this paper, a new method for detecting breast cancer is proposed, which utilizes dielectric characteristics of pathological tissues and time delay of back scattered response, and its feasibility was investigated. We have developed a detection algorithm and verified it by numerical simulation and measurement for a prototype system. For a prototype system, we have fabricated experimental model(artificial breast with a cancer) and UWB(ultra-wideband) antenna. The results of the measurement simulation show an excellent detection capability of a cancer tissue. It is found that a good UWB antenna and a good calibration signal are key elements of such detection system. Further study is ongoing to develop a commercial system.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

Vertical Alignment of Liquid Crystal by Ion Beam Irradiation (이온빔 배향에 의한 수직 배향막의 액정 배향)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Kim, Jong-Hwan;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

A New X-Ray Image Sensor Utilizing a Liquid Crystal Panel (새 구조의 액정 엑스선 감지기)

  • Rho, Bong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • We developed a new x-ray image sensor utilizing a reflection-mode liquid crystal panel as its sensitive element, and tested its functionality by using it to obtain an x-ray image of a printed circuit board. In the liquid crystal x-ray image sensors hitherto reported, the liquid crystal layer is in direct contact with the photoconductive film which is deposited on a glass substrate. In the fabrication of the new x-ray image sensor, a liquid crystal panel is fabricated in the first step by using a pair of glass plates of a few centimeters thicknrss. Then one of the glass substrates is ground until its thickness is reduced to about $60\;{\mu}m$. After polishing the glass plate, dielectric films for high reflectance at 630 nm, a film of amorphous selenium for photoconduction, and a transparent conductive film for electrode are deposited in sequence. The new x-ray image sensor has several merits: primarily, fabrication of a large area sensor is more easily compared with the old fashioned x-ray image sensors. Since the reflection type liquid crystal panel has a very steep response curve, the new x-ray sensor has much more sensitivity to x-rays compared with the conventional x-ray area sensor, and the radiation dosage can be reduced down to less then 20%. By combining the new x-ray sensor with CCD camera technology, real-time x-ray images can be easily captured. We report the structure, fabrication process and characteristics of the new x-ray image sensor.