Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.3.148

Polyperiodic-hole-array Plasmonic Color Filter for Minimizing the Effect of Angle of Incidence  

Jeong, Ki Won (School of Electronics Engineering, Kyungpook National University)
Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.3, 2020 , pp. 148-154 More about this Journal
Abstract
In this paper we propose a plasmonic color filter with a novel nanopattern. The suggested pattern, called a "polyperiodic hole array" (PPHA), is introduced to solve the angle dependence of the optical response that originates from the periodic structure. We set the diameter and period of the hole to make a green color filter, and set the unit-cell size and metal and dielectric thicknesses in consideration of the propagation length and skin depth. The periodic hole arrays are locally rotated to make a PPHA pattern, resulting in a globally aperiodic yet partially periodic pattern. As a result, compared to a general pattern, the PPHA nanostructured color filter has a maximum 40% improvement in spectral shift when the angle of incidence is increased from 0° to 30°. Transmittance reduction was also alleviated by 30%. This work will improve the performance of nanostructured color filters and help with nanotechnology being applied industrially to imaging devices, including displays and image sensors.
Keywords
Optics; Plasmonic color filter; Surface plasmon; Extraordinary optical transmission;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).   DOI
2 F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, "Efficiency and finite size effects in enhanced transmission through subwavelength apertures," Opt. Express 16, 9571-9579 (2008).   DOI
3 S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).   DOI
4 B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).   DOI
5 R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999).   DOI
6 H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007).   DOI
7 S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012).   DOI
8 B. Zeng, Y. Gao, and F. J. Bartoli, "Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters," Sci. Rep. 3, 2840 (2013).   DOI
9 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength Optics," Nature 424, 824-830 (2003).   DOI
10 K. A. Willets and R. P. V. Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).   DOI
11 F. V. Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. V. Exter, "Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission," Nature 492, 411-414 (2012).   DOI
12 H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).   DOI
13 Y. S. Do, "A highly reproducible fabrication process for large-area plasmonic filters for optical applications," IEEE Access 6, 68961-68967 (2018).   DOI
14 H. Liu and P. Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," J. Opt. Soc. Am. A 27, 2542-2550 (2010).
15 T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010).   DOI
16 C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Omnidirectional color filters capitalizing on a nano-resonator of Ag-$TiO_2$-Ag integrated with a phase compensating dielectric overlay," Sci. Rep. 5, 8467 (2015).   DOI
17 Y. G. Moon, Y. S. Do, M. H. Lee, B. Y. Hwang, D. J. Jeong, B.-K. Ju, and K. C. Choi, "Plasmonic chromatic electrode with low resistivity," Sci. Rep. 7, 15206 (2017).   DOI
18 Y. S. Do and K. C. Choi, "Poly-periodic hole arrays for angle-invariant plasmonic filters," Opt. Lett. 40, 3873-3876 (2015).   DOI
19 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).   DOI
20 S. Chang, Y. S. Do, J.-W. Kim, B. Y. Hwang, J. Choi, B.-H. Choi, Y.-H. Lee, K. C. Choi, and B.-K. Ju, "Photo-insensitive amorphous oxide thin-film transistor integrated with a plasmonic filter for transparent electronics," Adv. Funct. Mater. 24, 3482-3487 (2014).   DOI
21 Y. S. Do and K. C. Choi, "Quantitative analysis of enhancing extraordinary optical transmission affected by dielectric environment," J. Opt. 16, 065005 (2014).   DOI
22 A. K. Azad and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945-2947 (2005).   DOI
23 Y. H. Lee and Y. S. Do, "Optimal design method for a plasmonic color filter by using individual phenomenon in a plasmonic hybrid structure," Korean J. Opt. Photon. 29, 275-284 (2018).   DOI
24 Y. S. Do, J . H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013).   DOI