• Title/Summary/Keyword: Dielectric materials/properties

Search Result 1,188, Processing Time 0.025 seconds

Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites (카본블랙 충진 Polyethylene Matrix Composites의 유전 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.196-201
    • /
    • 2011
  • It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.

Effects of Crystal Structure on Microwave Dielectric Properties of Ceramics

  • Kim, Eung-Soo;Jeon, Chang-Jun;Kim, Sung-Joo;Kim, Su-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.251-255
    • /
    • 2008
  • Microwave dielectric properties of $MgTiO_3,\;MgWO_4,\;MgNb_2O_6$, and $MgTa_2O_6$ were investigated based on the structural characteristics. The dielectric constant (K) was dependent on the dielectric polarizabilities of the specimens, and the deviation of the observed dielectric polarizabilities (${\alpha}_{obs.}$) from the theoretical dielectric polarizabilities (${\alpha}_{theo.}$) were decreased with increasing of Mg-site bond valence. Quality factors (Qf) were affected by the sharing type of $MgO_6$ and $BO_6$ octahedra. Temperature coefficient of resonant frequency (TCF) was decreased with increasing of average octahedral distortion.

A Study on the Dielectric Characteristics in Epoxy Resins due to Variation of Network Structures (망목 구조 변화에 따른 에폭시 수지의 유전 특성에 관한 연구)

  • 김재환;손인환;심종탁;김경환;김명호;최병옥
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.651-658
    • /
    • 1997
  • In this paper, effect of interpenetrating polymer network(IPN) introduction on the dielectric properties, heat proof properties, internal structure and defects of the Epoxy/SiO$_2$composite materials, were investigated. we reported a relation between network structures and electrical properties, especially dielectric characteristics with variation of network structures for epoxy composite materials. According to experimental results, the specimens which have single network structures have lower dielectric constant than interpenetrating polymer network(IPN) specimens, but have relatively larger dependency to variation of temperature and frequency. It was confirmed that change of structures is attained by introducing of IPN to insulating materials. Therefore it is counted that introduction of multiple structure including IPN is necessary to improve heat proof and electrical properties.

  • PDF

Dielectric Properties of Orthorhombic Dysprosium Manganites

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.753-756
    • /
    • 2019
  • Orthorhombic dysprosium manganite DyMnO3 with single phase is synthesized using solid-state reaction technique and the crystal structure and dielectric properties as functions of temperature and frequency are investigated. Thermally activated dielectric relaxations are shown in the temperature dependence of the complex permittivity, and the respective peaks are found to be shifted to higher temperatures as the measuring frequency increases. In Arrhenius plots, activation energies of 0.32 and 0.24 eV for the high- and low-temperature relaxations are observed, respectively. Analysis of the relationship between the real and imaginary parts of the permittivity and the frequencies allows us to explain the dielectric behavior of DyMnO3 ceramics by the universal dielectric response model. A separation of the intrinsic grain and grain boundary properties is achieved using an equivalent circuit model. The dielectric responses of this circuit are discerned by impedance spectroscopy study. The determined grain and grain boundary effects in the orthorhombic DyMnO3 ceramics are responsible for the observed high- and low-temperature relaxations in the dielectric properties.

Effect of Degree of Particle Agglomeration on the Dielectric Properties of BaTiO3/Epoxy Composites (분말 응집도가 BaTiO3/에폭시 복합체의 유전특성에 미치는 영향)

  • Han, Jeong-Woo;Kim, Byung-Kook;Je, Hae-June
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.542-546
    • /
    • 2008
  • $BaTiO_3$/epoxy composites can be applied as the dielectric materials for embedded capacitors. The effects of the degree of $BaTiO_3$ particle agglomeration on the dielectric properties of $BaTiO_3$/epoxy composites were investigated in the present study. The degree of particle agglomeration was controlled by the milling of the agglomerated particles. The size and content of the agglomerated $BaTiO_3$ particles decreased with an increase in the milling time. The dielectric constants and polarizations of $BaTiO_3$/epoxy composites abruptly decreased with the increase of the milling time. It was concluded that the dielectric constants and polarizations of $BaTiO_3$/epoxy composites decreased as the degree of particle agglomeration decreased. The degree of agglomeration of $BaTiO_3$ particles turned out to be a very influential factor on the dielectric properties of $BaTiO_3$/epoxy composites.

Recent Progress in Dielectric Materials for MLCC Application (MLCC용 유전체 소재의 연구개발 동향)

  • Seo, Intae;Kang, Hyung-Won;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

Dielectric Properties of Ceramic/Polymer Composites at Microwave Frequencies

  • Kim, Eung-Su;Jeon, Chang-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • Effects of particle size, crystal structures and multilayer structures of $ATiO_3$, $ATa_2O_6$, $ANb_2O_6$, $AWO_4$, and $AMoO_4$ (A=Ni, Mg, Zn, Co) ceramic fillers on the dielectric properties of polystyrene (PS), polypropylene (PP) and polytetrafluoroethylene (PTFE) polymer matrices were investigated at microwave frequencies. The microwave dielectric properties of $ATiO_3$ (ilmenite), $ATa_2O_6$ (tri-rutile), $ANb_2O_6$ (columbite), AWO4 (wolframite), and AMoO4 (wolframite) ceramics were largely dependent on the structural characteristics of oxygen octahedra. The dielectric constant (K) of the composites was increased with the ceramic content. However, the dielectric loss (tan ${\delta}$) of the composites was affected by the type of ceramics and the crystallinity of polymers. For the composites with same amount of ceramics, the K was decreased and the tan ${\delta}$ was increased with the particle size of ceramics. Also, the dielectric properties of the composites were dependent on the multilayer structures with different arrangements. Several theoretical models have been employed to predict the effective dielectric properties of the composites. The frequency dependence of dielectric properties and the temperature coefficient of resonant frequency (TCF) of the composites were also discussed.

  • PDF

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors

  • Goh, Yumin;Kim, Baek-Hyun;Bae, Hyunjeong;Kwon, Do-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.178-183
    • /
    • 2016
  • Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.

Improved Densification and Microwave Dielectric Properties of BaO·Nd2O3·5TiO2 Modified with an Iso-Component Borate Glass

  • Shin, Dong-Joo;Lee, Hyung-Sub;Cho, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • [ $BaO{\cdot}Nd_2O_3{\cdot}5TiO_2$ ] (BNT) ceramics modified with a borate glass containing Ba, Nd and Ti as glass constituents were investigated with regard to their sintering behavior and microwave dielectric properties. An addition of iso-component glass significantly improved the sinterabilty of the BNT ceramics and lowered the sintering temperature. A maximum density of $5.29\;g/cm^3$ and an x-y shrinkage of 17% were obtained for BNT ceramics containing 10wt.% of the glass sintered at $1100^{\circ}C$. The dielectric composition without the glass additive was only slightly densified at $1100^{\circ}C$. The resulting sample exhibited two crystalline phases, $BaNd_2Ti_5O_{14}$ and $Ba_2Ti_9O_{20}$, regardless of sintering temperature and glass content. When >10wt.% glass was added, exaggerated grain growth with a less uniform microstructure was found, resulting in the subsequent reduction of the fired density and the dielectric properties. BNT ceramics containing 10wt.% of the isocomponent glass sintered at $1100^{\circ}C$ for 4 h showed promising dielectric properties of k = 71.3 and Q = 1,330.