Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.2.178

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors  

Goh, Yumin (Department of Materials Engineering, Korea Aerospace University)
Kim, Baek-Hyun (Materials Research Institute, Korea Aerospace University)
Bae, Hyunjeong (Materials Research Institute, Korea Aerospace University)
Kwon, Do-Kyun (Department of Materials Engineering, Korea Aerospace University)
Publication Information
Abstract
Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.
Keywords
Relaxor; High temperature capacitor; BT-NN-BMT; Perovskite; X9R;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "Weakly, Coupled Relaxor Behavior of $BaTiO_3$-$BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [1] 110-18 (2009).   DOI
2 H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "High-Energy Density Capacitors Utilizing $0.7BaTiO_3$-$0.3BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [8] 1719-24 (2009).   DOI
3 C.-C. Huang and D. Cann, "Phase Transition and Dielectric Properties in Bi$(Zn_{1/2}Ti_{1/2})O_3$-$BaTiO_3$ Perovskite Solid Solutions," J. Appl. Phys., 104 024117 (2008).   DOI
4 Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, "Ferroelectric-Relaxor Behavior of Ba ($Ti_{0.7}Zr_{0.3}$) $O_3$ Ceramics," J. Appl. Phys., 92 2655-57 (2002).   DOI
5 A. Chen, Y. Zhi, and J. Zhi, "Impurity-Induced Ferroelectric Relaxor Behavior in Quantum Paraelectric $SrTiO_3$ and Ferroelectric $BaTiO_3$," Phys. Rev. B, 61 [2] 957 (2000).   DOI
6 J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, "Dielectric Properties of Ba ($Ti_{1-y}Y_y$) $O_3$ Ceramics," J. Appl. Phys., 84 983-86 (1998).   DOI
7 D. H. Choi, A. Baker, M. Lanagan, S. Trolier-Mckinstry, and C. Randall, "Structural and Dielectric Properties in (1-x)$BaTiO_3$-xBi($Mg_{1/2}Ti_{1/2}$)$O_3$ Ceramics (0.1 ${\leq}$x ${\leq}$0.5) and Potential for High-Voltage Multilayer Capacitors," J. Am. Ceram. Soc., 96 [7] 2197-202 (2013).   DOI
8 Q. Zhang, Z. Li, F. Li, and Z. Xu, "Structural and Dielectric Properties of Bi($Mg_{1/2}Ti_{1/2}$)$O_3$-$BaTiO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [12] 4335-39 (2011).   DOI
9 D.-K. Kwon and M. H. Lee, "Temperature-Stable High-Energy-Density Capacitors Using Complex Perovskite Thin Films," IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 59 [9] 1894-99 (2012).   DOI
10 D.-K. Kwon, Y. Goh, D. Son, B. H. Kim, H. Bae, S. Perini, and M. Lanagan, "Temperature- and Frequency- Dependent Dielectric Properties of Sol-Gel-Derived $BaTiO_3$-$NaNbO_3$ Solid Solutions," J. Electron. Mater., 45 [1] 631-38 (2016).   DOI
11 C. E. Kim, Y. I. Park, and H. W. Lee, "Preparation of $PbTiO_3$ Fibres Using Triethanolamine-Complexed Alkoxide," J. Mater. Sci. Lett., 16, 96 (1997).   DOI
12 T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, "Relaxor Ferroelectric $BaTiO_3$-Bi($Mg_{2/3}Nb_{1/3}$)$O_3$ Ceramics for Energy Storage Application," J. Am. Ceram. Soc., 98 [2] 559-66 (2015).   DOI
13 A. Zeb and S. J. Milne, "Stability of High Temperature Dielectric Properties for (1-x)$Ba_{0.8}Ca_{0.2}TiO_3$-xBi($Mg_{0.5}Ti_{0.5}$)$O_3$ Ceramics," J. Am. Ceram. Soc., 96 [9] 2887-92 (2013).   DOI
14 R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr. Sect. A: Found. Crystallogr., 32 [5] 751-67 (1976).   DOI
15 C.-H. Lu and Y.-C. Chen, "Sintering and Decomposition of Ferroelectric Layered Perovskites: Strontium Dismuth Tantalate Ceramics," J. Eur. Ceram. Soc., 19 [16] 2909-15 (1999).   DOI
16 J. Ravez and A. Simon, "Some Solid State Chemistry Aspects of Lead-Free Relaxor Ferroelectrics," J. Solid State Chem., 162 [2] 260-65 (2001).   DOI
17 R. Dittmer, W. Jo, D. Damjanovic, and J. Rodel, "Lead-Free High-Temperature Dielectrics with Wide Operational Range," J. Appl. Phys., 109 034107 (2011).   DOI
18 A. N. Salak, M. P. Seabra, and V. M. Ferreira, "Evolution from Ferroelectric to Relaxor Behavior in the (1-x)$BaTiO_3$- xLa($Mg_{1/2}Ti_{1/2}$)$O_3$ System," Ferroelectrics, 318 [1] 185-92 (2005).   DOI
19 J. Wang, Y. Liu, K. Lau, R. L. Withers, Z. Li, and Z. Xu, "Dipolar-Glass-like Relaxor Ferroelectric Behavior in the $0.5BaTiO_3$-0.5Bi($Mg_{1/2}Ti_{1/2}$)$O_3$ Electroceramics," Appl. Phys. Lett., 103 [4] 042910 (2013).   DOI
20 R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992).   DOI
21 Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, and G. Wang, "Temperature-Dependent Stability of Energy Storage Properties of $Pb_{0.97}La_{0.02}(Zr_{0.58}Sn_{0.335}Ti_{0.085})O_3$ Antiferroelectric Ceramics for Pulse Power Capacitors," Appl. Phys. Lett., 106 [26] 262901 (2015).   DOI
22 H. Lee, J. R. Kim, M. Lanagan, S. Trolier-McKinstry, and C. A. Randall, "High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: Ca(Zr,Ti)$O_3$," J. Am. Ceram. Soc., 96 [4] 1209-13 (2013).   DOI
23 D. P. Shay, N. J. Podraza, N. J. Bonnelly, and C. A. Randall, "High Energy Density, High Temperature Capacitors Utilizing Mn-Doped $0.8CaTiO_3$-$0.2CaHfO_3$ Ceramics," J. Am. Ceram. Soc., 95 [4] 1348-55 (2012).   DOI
24 D. Tinberg and S. Trolier-Mckinstry, "Structural and electrical Characterization of $xBiScO_3$-(1-x)$BaTiO_3$," J. Appl. Phys., 101 [2] 4112 (2007).