• Title/Summary/Keyword: Dielectric Materials

Search Result 2,119, Processing Time 0.032 seconds

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

A Review of Mean-Field Homogenization for Effective Physical Properties of Particle-Reinforced Composites (평균장 균질화를 이용한 입자 강화 복합재의 유효 물성치 예측 연구 동향)

  • Lee, Sangryun;Ryu, Seunghwa
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • In this review paper, we introduce recent research studied effective physical properties of the reinforced composite using mean-field homogenization. We address homogenization for effective stiffness and expand it to effective thermal/electrical conductivity and dielectric constant. Multiphysics problems like piezoelectricity and thermoelectricity are considered by simplifying the constitutive equation into the linear equations like Hooke's law. We present a generalized theoretical formula for predicting effective physical properties of composite and validation by against finite element analysis.

Composite $BaTiO_3$ Embedded capacitors in Multilayer Printed Circuit Board (다층 PCB에서의 $BaTiO_3$ 세라믹 Embedded capacitors)

  • You, Hee-Wook;Park, Yong-Jun;Koh, Jung-Hyuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • Embedded capacitor technology is one of the effective packing technologies for further miniaturization and higher performance of electric packaging system. In this paper, the embedded capacitors were simulated and fabricated in 8-layered printed circuit board employing standard PCB processes. The composites of barium titanante($BaTiO_3$) powder and epoxy resin were employed for the dielectric materials in embedded capacitors. Theoretical considerations regarding the embedded capacitors have been paid to understand the frequency dependent impedance behavior. Frequency dependent impedance of simulated and fabricated embedded capacitors was investigated. Fabricated embedded capacitors have lower self resonance frequency values than that of the simulated embedded capacitors due to the increased parasitic inductance values. Frequency dependent capacitances of fabricated embedded capacitors were well matched with those of simulated embedded capacitors from the 100MHz to 10GHz range. Quality factor of 20 was observed and simulated at 2GHz range in the 10 pF embedded capacitors. Temperature dependent capacitance of fabricated embedded capacitors was presented.

Influense of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride

  • Kochervinskii, V.V.;Chubunova, E.V.;Lebedinskii, Y.Y.;Pavlov, A.S.;Pakuro, N.I.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2015
  • The phenomena of high-voltage polarization and conductivity in oriented vinylidenefluoride and tetrafluoroethylene copolymer films have been investigated. It was shown that under certain electric fields, injection of carriers from the material of electrodes appears The barrier for holes injection in the copolymer was found to be lower than that for electrons. It results in more effective screening of the external field near the anode than near cathode. Electrones, ejected from cathode, creating negative charge by trapping on the surface. It is shown that the electrons injected from cathodes create a negative homocharge on the copolymer surface and then become captured on the surface shallow traps. Their nature has been studied by the x-ray photoelectron spectroscopy. It was shown that these traps may consist of chemical defects in the form of new functional groups formed by reactions of surface macromolecules with sputtered atoms of aluminum. The asymmetric shape of hysteresis curves was explained by the difference in mobility of injected holes and electrons. These factors caused appearance of "non-closed" hysteresis curves for fluorine-containing polymer ferroelectrics. Hysteresis phenomena observed at low electric fields (below coercive ones) are to associate with the behavior of the domains localized in the ordered regions formed during secondary crystallization of copolymers.

Pyroelectric Properties of the PLT Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제조한 PLT박막의 초전 특성)

  • 김양선;정장호;박인길;이성갑;이영희
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.541-547
    • /
    • 1997
  • (Pb$_{1-x}$ La$_{x}$)Ti$_{1-x}$ $_4$O$_3$(x=0, 0.02, 0.04, 0.08) ceramic thin films were fabricated by Sol-Gel method. A stock solution of (Pb, La)TiO$_3$ with excess Pb 10 mol% was made and spin-coated on the Pt/Ti/SiO$_2$/Si substrate at 400rpm for 30 seconds. Coated specimens were dried on the hot-plate at 35$0^{\circ}C$ for 10 min and sintered at 500~75$0^{\circ}C$ for 1 hour. The dielectric constant, remanent polarization and coercive field of the PLT(6at.%) thin films sintered at $650^{\circ}C$ were 884, 13.95$\mu$C/$\textrm{cm}^2$ and 8.7kV/cm, respectively. Pyroelectric coefficient, figure of merit of pyroelectric current, voltage responsivity and detectivity of PLT(6at.%) thin films were 3.2$\times$10$^{-8}$ C/$\textrm{cm}^2$K, 1.02$\times$10$^{-8}$ C.cm/J, 2.9 $\times$10$^{-11}$ C.cm/J, 0.29$\times$10$^{-8}$ C.cm/J, respectively.ely.

  • PDF

Paratic Impedance Extraction of FC-PGA Package Pin using the Static Fast Multipole Method (Static FMM을 이용한 FC-PGA 패키지 핀에서의 기생 임피던스 추출)

  • 천정남;이정태;어수지;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1076-1085
    • /
    • 2001
  • In this paper, the FMM(Fast Multipole Method) combined with GMRES(Generalized Minimal RESidual Method) matrix solver is used to extract the parasitic impedance for complicated 3-D structures in uniform dielectric materials which limit the use of MoM(Method of Moment) due to its large computation time and memory requirement. This algorithm is a fast multipole-accelerated method based on quasistatic analysis and is very efficient for computing impedance between conductors. This paper proved the accuracy and efficiency of the FMM by comparing with MoM in simple examples. Finally the parasitic impedance of FC-PGA(Flip Chip Pin Grid Array) Package pins has been extracted by this algorithm and we have considered the possibility of the EMI/EMC problem caused by the signal interference.

  • PDF

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

The Ferroelectric Frequency characteristics of Bi$_{4-x}La_x$Ti$_3O_12$ ceramics with the variation of Lanthanum additives (La 첨가량에 따른 Bi$_{4-x}La_x$Ti$_3O_12$ 강유전체의 주파수특성)

  • 김응권;박복기;박기엽;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.463-466
    • /
    • 2001
  • In recent year, Ferroelectric BLT($Bi_{4-x}$La$_{x}$Ti$_3$O$_{12}$) is a promising candidate materials. This study was Practiced to make good conditions of BLT targets. In this study, calcination and sintering temperature were kept at 75$0^{\circ}C$, 110$0^{\circ}C$ for 2 hour respectively. the density obtained 7.612, 7.98, 7.877 g/㎤ as La$_2$O$_3$ contents were 0.0mol%, 0.25mo1%, 0.5mol%. Especially, the lanthanum content of 0.5 mol% measured C-axis (117) preferred orientation more than the others targets in the XRD. In $\varepsilon$$_{r}$-f relationship using by HP 4194 A impedance analyzer, the 0.5 mol% observed above 200 relative dielectric constant. but the dissipation factor was higher than others targets at 100Hz~13MHz range. SEM photograph with the content of La$_2$O$_3$ was observed like rod and plate types.types.s.

  • PDF

A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2$/Ar Plasma (고밀도 $Cl_2$/Ar 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구)

  • 민병준;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$ thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$ thin films were etched with C1$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin films is 285 $\AA$/min under C1$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$ over CeO$_2$ and $Y_2$O$_3$ are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$ film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF