• Title/Summary/Keyword: Dielectric Constant

Search Result 2,742, Processing Time 0.032 seconds

High Temperature Dielectric Properties of Silicon Nitride Materials (질화규소 재료의 고온 유전물성 평가)

  • Choi, Doo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.114-119
    • /
    • 2007
  • Dielectric properties of quartz glass and $Si_3N_4$ are investigated using the waveguide method from room temperature to $800^{\circ}C$. For the case of dielectric constant, $Si_3N_4$ showed similar increase with quartz glass up to $300^{\circ}C$, but less increase from $300^{\circ}C$ to $800^{\circ}C$. For the case of loss tangent, those showed gradual increase with temperature except of some temperature points. The loss tangent of $Si_3N_4$ and quartz glass increased up to 18.2% and 12.5% respectively. Through these researches, high temperature dielectric properties of silicon nitride materials are characterized.

Development of a New On-line fiber Orientation Sensor Based on Dielectric Anisotropy

  • Nagata, Shinichi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.49-55
    • /
    • 2002
  • A new method is proposed for the on-line measurement of the fiber orientation of sheet materials. The measurement of fiber orientation is very important in manufacturing paper sheets, non-woven fabrics, and glass sheets, because fiber orientation strongly affects product properties represented by, for example, dimensional stability of paper. A method developed in this research utilizes anisotropy of dielectric constants of sheet materials as a key characteristic to determine the fiber orientation. The new on-line sensor, consisting of 5 microwave dielectric resonators set in different directions, was designed to detect the fiber orientation while paper is running with high speed on a paper machine. This sensor can determine the direction and the degree of fiber orientation from the measured direction of the maximal dielectric constant and its variation, respectively. The fundamental performance of this system was examined by the static measurement of printing grade paper, which gave a satisfactory result. Then, the dynamic measurements were done at a speed of 1,000 m/min by using a high-speed test-coating machine.

Electric double layers interactions under condition of variable dielectric permittivity

  • Payam, Amir Farrokh;Fathipour, Morteza
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.157-171
    • /
    • 2010
  • In this paper, a theoretical method has been developed for the electric double layer interaction under condition of the variable dielectric permittivity of water. Using Poisson-Boltzmann equation (PBE), for one plate and two plates having similar or dissimilar constant charge or constant potential, we have investigated the electric double layer potential, its gradient and the disjoining pressure as well as the effect of variation of dielectric permittivity on these parameters. It has been assumed that plates are separated by a specific distance and contain a liquid solution in between. It is shown that reduction of the dielectric permittivity near the interfaces results in compression of electric double layers and affects the potential and its gradient which leads to a decreased electrostatic repulsion. In addition, it is shown that variation of dielectric permittivity in the case of higher electrolyte concentration, leads to a greater change in potential distribution between two plates.

Dielectric Characteristics on Filler Content and Sintering Temperature in Pb-Free White Dielectric Layer (Pb-Free 백색유전체에서 필러함량과 소성온도에 따른 유전체 특성)

  • An, Yong-Tae;Choi, Byung-Hyun;Ji, Mi-Jung;Lee, Jung-Min;Kim, Hyun-Sun;Jung, Kyung-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.755-759
    • /
    • 2008
  • For the development of a new white dielectric layer in plasma display panel, different $TiO_2$ types as a filler was add to the $Bi_2O_3$-BaO-ZnO glass matrix. The reflectance and dielectric constant of dielectric have been investigated as a function of the mixing content (rutile and anatase), and sintering temperature. The reflectance of dielectric sintered at the 520$^{\circ}C$ appeared most highly and suitable in terms of the adhesion and reflectance of the soda-lime glasses. Also, the thermal expansion coefficient of dielectric was found to be $85.6\times10^{-7}/K$, which was similar to that of the soda-lime glasses. Especially, the dielectric constants were not increased with increasing of $TiO_2$ filler contents.

탄소나노튜브와 ZnS:Cu,Cl 형광체 무기 EL

  • Kim, Jin-Yeong;Jeong, Dong-Geun;Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.68-68
    • /
    • 2010
  • Electroluminescence (EL) characteristics of green-emission ZnS:Cu,Cl-based ac-type inorganic powder electroluminescent structures were examined by inserting carbon nanotubes (CNTs) into or next to the dielectric layer. For the top-emission type EL structure, where the luminescent light was emitted from the top of the structure, was fabricated by assembling in order, a top electrode, an emitting layer, a dielectric layer, and a bottom electrode from the top. $BaTiO_3$ powder mixed with CNTs was used as a dielectric layer or CNTs were deposited between the bottom electrode and $BaTiO_3$ dielectric layer in order to improve the role of the dielectric layer in the structure. Luminance of an EL structure with CNTs inclusion was greatly enhanced possibly due to the high dielectric constant in the dielectric layer of $BaTiO_3$/CNTs, which is one of hot research topics utilizing nano-objects for intensifying dielectric constant and reducing dielectric loss at the same time. A variation on the CNTs themselves and their inclusion methods in the dielectric layer has been exhorted, and the underlying mechanism for the role of CNTs in the EL structure will be explained in the poster. In order to extend the flexibility of EL devices, EL devices were fabricated on the paper substrate and their performance was compared other EL devices on the plastic-based substrate.

  • PDF

The Prototype Development of an Engine Oil Deterioration Sensor Installed Inside an Oil Filter (오일필터 일체형 엔진오일퇴화감지센서 시작품 개발 I)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2008
  • The purpose of this study is to develop the proto type sensor installed inside an oil filter in order to detect oil deterioration level. The sensor is made up with two concentric cylinders with constant gap in between and a filter element inside the central area. The size will be designed as similar as real oil filters. The sensor will be tested on a test rig, which is circulating engine oil, with the same size of an oil filter adapting housing as real engines'. It will be measured the capacitance of a sample engine oil, then be able to be gotten the dielectric constant. The changes in the dielectric constant could be correlated with the engine oil deterioration level if the sensor development would be completed. In this paper, it will be shown the test results carrying out under variable temperature conditions at atmosphere pressure.

Propcrties of Low Delectric Constant SiOF Films Formed by ECR CVD (ECR CVD 방법에 의해 증착된 저유전율 SiOF 박막특성)

  • 장원익;강승열;백종태;유형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.386-388
    • /
    • 1996
  • Low dielectric constant fluorinated oxide (SiOF) films were deposited using SiF$_4$/O$_2$/SiH$_4$mixtures by electron cyclotron resonance chemical vapor deposition (ECR CVD). Chemical composition of SiOF films was investigated by Fourier transform infrared spectroscopy (FT-lR). The fluorine content in the SiOF film observed by X-ray photoelectron spectroscopy (XPS). The dielectric constant decreased with increasing of the SiF$_4$ flow rate about 8sccm. The SiOF film, deposited with SiF$_4$=8 sccm, exhibited a F content of 5 atomic % and a relative dielectric constant 3.45. For evaluating SiOF films stability, humidity tests were performed.

  • PDF

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.