• Title/Summary/Keyword: Dielectric Barrier Discharge (DBD)

Search Result 169, Processing Time 0.027 seconds

The surface modification on the inner wall of PTFE tube using micro plasma (마이크로 플라즈마 방전을 이용한 PTFE 튜브 내벽의 표면개질)

  • Jo, Yong-Gi;Kim, Hun-Bae;Jeong, Dong-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.104-104
    • /
    • 2013
  • 고분자이면서 유전체인 Poly-Tetra-Fluoro-Ethylene (PTFE) 튜브에 AC형 고전압을 인가하여 유전체 장벽 방전 (dielectric barrier discharge, DBD)를 유도하고, 발생된 마이크로 플라즈마에 의한 PTFE 튜브 내벽의 표면 개질에 관한 연구이다. 가스인입과 진공배기가 가능한 장치에 PTFE 튜브를 연결하고, 튜브내부를 진공상태를 유지하면서 반응가스를 이용하여 튜브 내벽을 표면개질 하였다. 반응가스를 아르곤, 수소, 아세틸렌, 산소, 질소를 반응 단계에 맞게 혼입하여 마이크로 플라즈마를 발생시켜 플라즈마에 의한 표면변화를 관찰하였다. 표면은 반응성 가스 플라즈마에 의해 물리 화학적 반응이 일어나 고분자 표면의 반응성 활성화를 통한 표면개질의 방식으로 진행되었다. 표면 개질된 튜브 내벽 표면에 대해 XPS, FT-IR, SEM, 접촉각 측정과 분석 실시함으로써 표면변화를 관찰하였다.

  • PDF

Plasma Bioscience and Medicines (플라즈마 바이오과학 및 의학)

  • Choi, Eun Ha
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • Nonthermal bio-compatible plasma (bioplasma) sources and their characteristics operating at atmospheric pressure could be used for biological cell interactions, especially for plasma bioscience and medicines. The electron temperatures and plasma densities of this bioplasma are measured to be 0.7 ~ 1.8 eV and $(3-5){\times}10^{14-15}cm^{-3}$, respectively. Herein, we introduced general schematic view of the plasma-initiated ultraviolet photolysis of water inside the biological solutions or living tissue for the essential generation mechanism of the reactive hydroxyl radical [OH] and hydrogen peroxide [$H_2O_2$], which may result in apoptotic cell death in plasma bioscience and medicines. Further, we surveyed the various nonthermal bioplasma sources including plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The diseased biological protein, cancer, and mutated cells could be treated by these bioplasma sources or bioplasma activated water to result in their apoptosis for new paradigm of plasma bioscience and medicines.

AC PDP의 셀 크기 및 격벽 높이 변화에 따른 방전 특성 분석

  • Lee, Jong-Bong;Sim, Seung-Bo;Choe, Yong-Seok;Hwang, Seok-Won;Lee, Ho-Jun;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.106-106
    • /
    • 2010
  • AC PDP(Plasma Display Panel)는 상압에 가까운 압력에서 DBD(Dielectric Barrier Discharge) 방전을 이용한 디스플레이다. AC PDP는 보통 면 방전을 이용하기 때문에 대향 방전과는 다른 방전 현상을 보인다. 본 연구에서는 4인치 test 패널 제작하여 격벽 높이 변화에 따른 방전 현상을 연구하였다. PDP 셀은 $1mm^3$ 보다 작은 크기를 가지고 있기 때문에 방전 현상을 분석하는 것은 쉽지 않다. 그래서 이 연구에서는 2, 3차원 유체 시뮬레이션을 이용하여 실험 결과에 대한 방전 현상을 연구하였다. 테스트 패널을 통하여 정적 마진, 휘도, 소비전력, 발광효율 등을 구하였고, Fluid 시뮬레이션을 통하여 전기장 분포, 하전입자 및 여기종 입자들의 개수 및 밀도 분포, 벽전하 분포 등을 통하여 방전 특성의 경향성을 분석하였다. 격벽 높이가 높아질수록 방전 공간이 넓어지면서 효율이 증가하였으나 $140\;{\mu}m$ 이상의 높이에서는 광 변환 효율이 감소하면서 효율이 오히려 감소하였다.

  • PDF

Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst (상업용 오존촉매와 광촉매를 이용한 오존제거특성)

  • Byeon, Jeong-Hoon;Park, Jae-Hong;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF

Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma

  • Nguyen, Duc Ba;Heo, Il Jeong;Mok, Young Sun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.372-379
    • /
    • 2018
  • The improvement of $NO_x$ reduction by $Ag/{\gamma}-Al_2O_3$ with a hydrocarbon ($n-C_7H_6$) in the early state was investigated in a packed-bed dielectric barrier discharge plasma reactor. The results revealed that the combination of plasma with the catalyst enhanced $NO_x$ reduction efficiency at low operating temperatures, depending on the temperature and specific input energy. To sum up, the poor performance of the catalytic $NO_x$ reduction at low temperatures in the early stage before reaching thermochemical steady state can be greatly compensated for by using the atmospheric-pressure plasma generated in the catalyst bed.

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Pin-to-plate DBD system을 이용하여 HMDS/$O_2$ 유량 변화에 따라 증착된 $SiO_2$ 박막 특성 분석

  • ;Park, Jae-Beom;O, Jong-Sik;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.447-447
    • /
    • 2010
  • 일찍이 $SiO_2$ (Silicon dioxide) 박막은 다양한 분야에서 유전층, 부식 방지층, passivation층 등의 역할을 해왔다. 그리고 이러한 박막 공정은 대부분 진공의 환경에서 그 공정이 이루어지고 있다. 하지만 이러한 진공 system은 chamber, loadlock 그리고 펌프 등의 다양한 진공장비로 인한 생산 비용 증가, 공정의 복잡성뿐만 아니라 공정의 대면적화에 어려움을 지니고 있다. 그리고 최근 flexible display의 제조 공정에서 polymer 혹은 plastic 기판을 제조 공정에 적용시키기 위해 저온 공정이 필수적으로 요구 되고 있다. 이러한 기술적 한계를 뛰어 넘기 위해 최근 많은 연구가들은 atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD)에 대해 지속적으로 다양한 연구를 하고 있다. 본 연구에서는 remote-type의 modified pin-to-plate dielectric barrier discharge (DBD) 시스템을 이용한 $SiO_2$ 무기 박막 증착에 관해 연구하였다. $O_2$/He/Ar의 gas와 5 kV AC power (30 kHz)의 전원장치를 통해 고밀도 대기압 플라즈마를 발생시켰고, silicon precursor로는 hexamethyldisilazane (HMSD)를 사용하였다. 먼저 HMDS와 $O_2$ gas의 flow rate 변화에 따른 증착률을 조사하였고 그 다음으로 박막의 조성 및 표면 특성을 조사하였다. HMDS의 유량이 100 ~ 300 sccm으로 증가함에 따라 증착속도는 증가했다. 하지만 FT-IR을 통해 HMDS의 유량이 증가하면 반응에 참여할 산소 분자의 부족으로 인해 $-(CH_3)_X$의 peak intensity가 증가하고, -OH의 peak intensity가 점차 감소함을 관찰 할 수 있었다. 또한 증착된 박막의 표면에 particle과 불균일한 surface morphology 등을 SEM image를 통해 관찰 하였다. 산소 유량이 탄소와 관련된 많은 불순물들의 제거에 도움이 됨에도 불구하고 14 slm 이상의 산소가 반응기 내로 주입되게 되면 대기압 플라즈마의 discharge가 불안정하게 되어 공정효율을 저하시키는 요소가 되었다. 결과적으로 HMDS (150 sccm)/$O_2$ (14 slm)/He (5 slm)/Ar (3 slm)의 조건에서 약 42.7 nm/min 증착률을 가지며, 불순물이 적고 surface morphology가 깨끗한 $SiO_2$ 박막을 증착할 수 있었다.

  • PDF

Surface Modification of TiO2 by Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구)

  • Cho, S.J.;Jung, C.K.;Kim, S.S.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • To improve surface wettability, each sample was treated by atmospheric pressure plasma (APP) using dielectric barrier discharge (DBD) system. Argon and oxygen gases were used for treatment gas to modify the $TiO_2$ surface by APP with RF power range from 50 to 200 W. Water contact angle was decreased from $20^{\circ}$ to $10^{\circ}$ with argon only. However, water contact angle was decreased from $20^{\circ}$ to < $1^{\circ}$ with mixture of argon and oxygen. Water contact angle with $O_2$ plasma was lower than water contact angle with Ar plasma at the same RF power. It seems to be increasing the polar force of $TiO_2$ surface. Also, analysis result of X-ray photoelectron spectra (XPS) shows the increase of intensity of O1s shoulder peak, resulting in increasing of surface wettability by APP. Moreover, each water contact angle increased according to increase past time. However, contact angle increase with plasma treatment was lower than without plasma treatment. Additionally, the efficiency of $TiO_2$ photocatalyst was improved by plasma surface-treatment through the degradation experiment of phenol.

Surface Modification by Atmospheric Pressure DBDs Plasma: Application to Electroless Ni Plating on ABS Plates

  • Song, Hoshik;Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • Acrylonitrile-butadiene-styrene (ABS) plastic is a polymer material extensively used in electrical and electronic applications. Nickel (Ni) thin film was deposited on ABS by electroless plating, after its surface was treated and modified with atmospheric plasma generated by means of dielectric barrier discharges (DBDs) in air. The method in this study was developed as a pre-treatment for electroless plating using DBDs, and is a dry process featuring fewer processing steps and more environmentally friendliness than the chemical method. After ABS surfaces were modified, surface morphologies were observed using a scanning electron microscope (SEM) to check for any physical changes of the surfaces. Cross-sectional SEM images were taken to observe the binding characteristics between metallic films and ABS after metal plating. According to the SEM images, the depths of ABS by plasma are shallow compared to those modified by chemically treatment. The static contact angles were measured with deionized (DI) water droplets on the modified surfaces in order to observe for any changes in chemical activities and wettability. The surfaces modified by plasma showed smaller contact angles, and their modified states lasted longer than those modified by chemical etching. Adhesion strengths were measured using 3M tape (3M 810D standard) and by 90° peel-off tests. The peel-off test revealed the stronger adhesion of the Ni films on the plasma-modified surfaces than on the chemically modified surfaces. Thermal shock test was performed by changing the temperature drastically to see if any detachment of Ni film from ABS would occur due to the differences in thermal expansion coefficients between them. Only for the plasma-treated samples showed no separation of the Ni films from the ABS surfaces in tests. The adhesion strengths of metallic films on the ABS processed by the method developed in this study are better than those of the chemically processed films.

Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure (유전체장벽 방전구조의 비접촉식 저온 대기압 면방전 플라즈마를 이용한 빵곰팡이의 살균효과)

  • Ryu, Young Hyo;Uhm, Han Sup;Park, Gyung Soon;Choi, Eun Ha
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.55-65
    • /
    • 2013
  • Sterilization of Neurospora crassa has been investigated in this research by using a surface air plasma with dielectric barrier discharged (DBD) structure under atmospheric pressure. The sinusoidal alternating current has been used in this experiment with discharge voltage of 1.4~2.3 kV. The phase difference between the voltage and current signals are found to be almost 80 degree due to the capacitive property of dielectric barrier. Temperature on the biomaterials has been minimized by radiating the heat with the air cooling system. It is noted that the substrate temperature remains under 37 degree for plasma exposure time of 10 minutes with operation of cooler system. It is found that the ozone, $O_3$, has been measured to be about 25~30 ppm within 1 cm region and to be about 5 ppm at the 150 cm downstream region away from the suface plasma. It is also noted that the nitric oxide, NO, and nitric dioxide, $NO_2$, are not nearly detected. Germination rate and mitochodrial activity of Neurospora crassa immersed in the deionized water have been found to be drastically decreased as the plasma treatment time and its electrical power are increased in this experiment. Here, the mitochondrial activity has been analyzed by MTT (3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. However, sterilization of Neurospora crassa immersed in the Vogel's minimal media has been found to be low by plasma treatment, which is caused by surrounding background solution. This research shows the sterilization possibility of Neurospora crassa by using the noncontated surface DBD plasma, which is different from the plasma jet. This is mainly attibuted to the reactive species generated by the surface plasma, since they play a major role for inhibition of micobes such as Neurospora crassa.