Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.08.011

Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma  

Nguyen, Duc Ba (Department of Chemical and Biological Engineering, Jeju National University)
Heo, Il Jeong (Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology)
Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 372-379 More about this Journal
Abstract
The improvement of $NO_x$ reduction by $Ag/{\gamma}-Al_2O_3$ with a hydrocarbon ($n-C_7H_6$) in the early state was investigated in a packed-bed dielectric barrier discharge plasma reactor. The results revealed that the combination of plasma with the catalyst enhanced $NO_x$ reduction efficiency at low operating temperatures, depending on the temperature and specific input energy. To sum up, the poor performance of the catalytic $NO_x$ reduction at low temperatures in the early stage before reaching thermochemical steady state can be greatly compensated for by using the atmospheric-pressure plasma generated in the catalyst bed.
Keywords
$NO_x$; DBD; $Ag/{\gamma}-Al_2O_3$; HC-SRC; Low temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.Z. Jacobson, Air Pollution and Global Warming: History, Science, and Solutions, Cambridge University Press, 2012.
2 S. Jafarmadar, in: S. Bari (Ed.), The Effect of Split Injection on the Combustion and Emissions in DI and IDI Diesel Engines, InTech, Rijeka, 2013.
3 B. Pereda-Ayo, J.R. Gonzalez-Velasco, in: S. Bari (Ed.), $NO_x$ Storage and Reduction for Diesel Engine Exhaust after Treatment, InTech, Rijeka, 2013.
4 F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, X. Meng, Catalysts 7 (2017).
5 J. Wang, H. Zhao, G. Haller, Y. Li, Appl. Catal. B: Environ. 202 (2017) 346.   DOI
6 J. Tan, Y. Wei, Y. Sun, J. Liu, Z. Zhao, W. Song, J. Li, X. Zhang, J. Ind. Eng. Chem. 63 (2018) 84.   DOI
7 L. Xu, S. Niu, D. Wang, C. Lu, Q. Zhang, K. Zhang, J. Li, J. Ind. Eng. Chem. 63 (2018) 391.   DOI
8 Q. Zhang, J. Zhang, Z. Song, P. Ning, H. Li, X. Liu, J. Ind. Eng. Chem. 34 (2016) 165.   DOI
9 Y. Liang, M. Zhao, J. Wang, M. Sun, S. Li, Y. Huang, L. Zhong, M. Gong, Y. Chen, J. Ind. Eng. Chem. 54 (2017) 359.   DOI
10 M.A. Goula, N.D. Charisiou, K.N. Papageridis, A. Delimitis, E. Papista, E. Pachatouridou, E.F. Iliopoulou, G. Marnellos, M. Konsolakis, I.V. Yentekakis, J. Environ. Chem. Eng. 4 (2016) 1629.   DOI
11 Y. Jung, Y.J. Shin, Y.D. Pyo, C.P. Cho, J. Jang, G. Kim, Chem. Eng. J. 326 (2017) 853.   DOI
12 H. Pan, Y. Guo, H.T. Bi, Chem. Eng. J. 280 (2015) 66.   DOI
13 T. Chaieb, C. Thomas, S. Casale, C. Louis, L. Delannoy, Catal. Lett. 148 (2018) 539.   DOI
14 A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. Peden, J. Szanyi, Chem. Soc. Rev. 44 (2015) 7371.   DOI
15 E. Yuan, K. Zhang, G. Lu, Z. Mo, Z. Tang, J. Ind. Eng. Chem. 42 (2016) 142.   DOI
16 G. Sui, Z. Xue, D. Zhou, Y. Wang, Y. Shen, Y. Zong, Y. Liu, T. Qiu, S. Zhu, J. Ind. Eng. Chem. 51 (2017) 229.   DOI
17 V.S. Prasad, P. Aghalayam, Ind. Eng. Chem. Res. 56 (2017) 11705.   DOI
18 L. Castoldi, E. Aneggi, R. Matarrese, R. Bonzi, J. Llorca, A. Trovarelli, L. Lietti, Catal. Today 258 (2015) 405.   DOI
19 A. Mihaylova, A. Naydenov, D. Kovacheva, E. Ivanova, D. Stoyanova, P. Stefanov, Catal. Commun. 10 (2009) 1288.   DOI
20 X.-l. Long, B.-b. Duan, H.-x. Cao, M.-l. Jia, L.-a. Wu, J. Ind. Eng. Chem. 62 (2018) 217.   DOI
21 T.H. Ihm, J.O. Jo, Y.J. Hyun, Y.S. Mok, Appl. Chem. Eng. 27 (2016) 92.   DOI
22 F. Gunnarsson, J.A. Pihl, T.J. Toops, M. Skoglundh, H. Harelind, Appl. Catal. B: Environ. 202 (2017) 42.   DOI
23 J.O. Jo, Q.H. Trinh, S.H. Kim, Y.S. Mok, Catal. Today 310 (2018) 42.   DOI
24 J.B. Lee, H.-C. Kang, O.J. Jo, S.Y. Mok, Catalysts 7 (2017).
25 J.O. Jo, Y.S. Mok, Appl. Chem. Eng. 29 (2018) 103.
26 M. Koebel, G. Madia, M. Elsener, Catal. Today 73 (2002) 239.   DOI
27 Y. Li, Y. Li, P. Wang, W. Hu, S. Zhang, Q. Shi, S. Zhan, Chem. Eng. J. 330 (2017) 213.   DOI
28 C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Chem. Commun. (2004) 2718.
29 M. Iwasaki, H. Shinjoh, Appl. Catal. A: Gen. 390 (2010) 71.   DOI
30 L. Zhang, X.-l. Sha, L. Zhang, H.-b. He, Z.-h. Ma, L.-w. Wang, Y.-x. Wang, L.-x. She, AIP Adv. 6 (2016)075015.   DOI
31 Y. Xue, W. Sun, Q. Wang, L. Cao, J. Yang, Chem. Eng. J. 335 (2018) 612.   DOI
32 X. Wang, J. Cheng, X. Wang, Y. Shi, F. Chen, X. Jing, F. Wang, Y. Ma, L. Wang, P. Ning, Chem. Eng. J. 333 (2018) 402.   DOI
33 X. Zhou, X. Huang, A. Xie, S. Luo, C. Yao, X. Li, S. Zuo, Chem. Eng. J. 326 (2017) 1074.   DOI
34 C. Yu, B. Huang, L. Dong, F. Chen, Y. Yang, Y. Fan, Y. Yang, X. Liu, X. Wang, Chem. Eng. J. 316 (2017) 1059.   DOI
35 C. Xu, W. Sun, L. Cao, T. Li, X. Cai, J. Yang, Chem. Eng. J. 308 (2017) 980.   DOI
36 A. Xie, X. Zhou, X. Huang, L. Ji, W. Zhou, S. Luo, C. Yao, J. Ind. Eng. Chem. 49 (2017) 230.   DOI
37 D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 57 (2018) 322.   DOI
38 A.M. Abu-Jrai, J.A. Yamin, K.A. Ibrahim, O.A. Al-Khashman, M.A. Al-Shaweesh, M.A. Hararah, U. Rashid, M. Ahmad, G.M. Walker, A.a.H. Al-Muhtaseb, J. Ind. Eng. Chem. 20 (2014) 1650.   DOI
39 Q.H. Trinh, S.H. Kim, Y.S. Mok, Chem. Eng. J. 302 (2016) 12.   DOI
40 U. Kogelschatz, Plasma Chem. Plasma Process. 23 (2003) 1.   DOI
41 Q.H. Trinh, Y.S. Mok, Korean J. Chem. Eng. 33 (2016) 735.   DOI
42 G. Froment, K. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, third ed., Wiley, New York, 2010.
43 D.B. Nguyen, W.G. Lee, Chem. Eng. J. 294 (2016) 58.   DOI
44 D.B. Nguyen, W.G. Lee, RSC Adv. 6 (2016) 26505.   DOI
45 D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 52 (2017) 7.   DOI
46 D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 32 (2015) 187.   DOI