• 제목/요약/키워드: Die deformation

검색결과 560건 처리시간 0.033초

TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석 (Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives)

  • 김상우;이해중;이효수
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package)는 가전제품, 자동차, 모바일, 데스크톱 PC등을 위한 저렴한 비용의 패키지로, 리드 프레임을 사용하는 IC패키지이다. TSOP는 BGA와 flip-chip CSP에 비해 우수한 성능은 아니지만, 저렴한 가격 때문에 많은 분야에 널리 사용되고 있습니다. 그러나, TSOP 패키지에서 몰딩공정 할 때 리드프레임의 열적 처짐 현상이 빈번하게 일어나고, 반도체 다이와 패드 사이의 Au 와이어 떨어짐 현상이 이슈가 되고 있다. 이러한 문제점을 해결하기 위해서는 리드프레임의 구조를 개선하고 낮은 CTE를 갖는 재료로 대체해야 한다. 본 연구에서는 열적 안정성을 갖도록 리드프레임 구조 개선을 위해 수치해석적 방법으로 진행하였다. TSOP 패키지에서 리드프레임의 열적 처짐은 반도체와 다이 사이의 거리(198 um~366 um)에서 안티-디플렉션의 위치에 따라 시뮬레이션을 진행하였다. 안티-디플렉션으로 TSOP 패키지의 열적 처짐은 확실히 개선되는 것을 확인 했다. 안티-디플렉션의 위치가 inside(198 um)일 때 30.738 um 처짐을 보였다. 이러한 결과는 리드프레임의 열적 팽창을 제한하는데 안티-디플렉션이 기여하고 있기 때문이다. 그러므로 리드프레임 패키지에 안티-디플렉션을 적용하게 되면 낮은 CTE를 갖는 재료로 대체하지 않아도 열적 처짐을 향상시킬 수 있음을 기대할 수 있다.

마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석 (Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs)

  • 강정은;유지윤;최인규;유제형;이창환
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구 (Study on Buckling Instability of Expansion Tube using Finite Element Method)

  • 최원목;권태수;정현승
    • 한국철도학회논문집
    • /
    • 제13권2호
    • /
    • pp.147-151
    • /
    • 2010
  • 충돌에너지는 다이에 의해 확관되는 팽창튜브의 소성변형에너지로 흡수된다. 충돌에너지를 성공적으로 흡수하기 위하여 튜브가 팽창되는 동안 좌굴이 발생해서는 안 된다. 팽창튜브의 좌굴불안전성은 초기경계조건과 튜브 두께 그리고 길이에 영향을 받는다. 본 연구는 동적 축 하중을 받는 팽창튜브의 좌굴을 예측하기 위한 경계조건의 결정, 기하학적 결함의 적용 그리고 재료의 비선형성과 동적효과를 적용하는 일련의 해석방법 및 절차를 제안하였다. 또한, 기하학적 결함의 적용이 튜브의 좌굴하중과 좌굴형상에 미치는 영향을 유한요소해석 결과를 통하여 분석하였고 튜브두께와 기하학적 결함의 상관관계를 연구하였다. 해석결과 기하학적 결함과 튜브의 좌굴형상은 밀접한 관계가 있었고 튜브의 두께가 작으면 기하학적 결함에 상관없이 좌굴하중은 변하지 않았다. 하지만, 두께가 증가할 경우 결함율이 증가하면 좌굴하중이 감소하는 경향을 보였다.

고탄소강 다단 신선 와이어의 표면 온도 상승에 의한 축방향 잔류응력 예측 (Prediction of Axial Residual Stress in Drawn High-Carbon Wire Resulting Due to Increase in Surface Temperature)

  • 김대운;이상곤;김병민;정진영;반덕영
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1479-1485
    • /
    • 2010
  • 최근 와이어의 생산성 및 고강도화를 위한 고탄소강의 고속신선으로 인해 와이어 표면의 급격한 온도상승으로 잔류응력이 크게 증가하는 문제점이 발생되고 있다. 와이어의 다단 신선 공정시에는 소성변형과 마찰열에 의하여 와이어 내부의 온도가 더욱 크게 상승하게 된다. 특히, 고속 신선의 경우 마찰에 의한 온도구배가 더욱 크게 되어 와이어 표면층에 축방향 인장 잔류응력을 과도하게 발생시킨다. 따라서, 본 연구에서는 먼저 표면 온도 상승과 축방향 잔류응력과의 관계를 규명한 다음에 와이어의 평형온도 예측 모델을 제안하고, 이를 토대로 표면 온도 상승에 의한 축방향 잔류응력 예측식을 개발하였다. 고탄소강(0.82%C)소재의 다단신선 실험을 통해 얻어진 시편에 대하여 X 선 회절을 이용하여 잔류응력을 측정하여 제안된 예측식을 검증하였다.

주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구 (A Study on the Development of Large Aluminum Flange using Casting/Forging Process)

  • 배원병;왕신일;서명규;조종래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.905-909
    • /
    • 2001
  • The significance of casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from $420^{\circ}C$ to $450^{\circ}C$. The suitable strain rate was 1.5 $sec^{-1}$. The deformation amount of a preform in a forging process is key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of cast preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for the low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeds 0.7. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

  • PDF

다중판재의 고속충돌에 관한 최적설계 (Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact)

  • 윤덕현;박명수;정동택;유정훈
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

마이크로 단조를 이용한 Zr 계 벌크 비정질합금의 미세 성형성 평가와 유한요소해석 적용에 관한 연구 (A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ Bulk Metallic Glasses using micro-forging and Finite Element Method applications)

  • 강성규;박규열;손선천;이종훈;나영상
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.153-161
    • /
    • 2006
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro- formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values ($=A_f/A_g$), where $A_g$ is cross-sectional area of U groove, and $A_f$ the filled area by material. Micro-forging process was simulated and analyzed by applying finite element method. FEM simulation results showed reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions were tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM simulation using a commercial software, DEFORM was confirmed to be applicable for the optimization of micro-forming process.

다점 프레스를 이용한 곡면 성형의 가공 정보 산출을 위한 IDA방법 (Application of IDA Method for Hull Plate Forming by Multi-Point Press Forming)

  • 윤종성;이장현;유철호;황세윤;이황범
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.75-82
    • /
    • 2008
  • Flame bending has been extensively used in the shipbuilding industry for hull plate forming In flame bending it is difficult to obtain the desired shape because the residual deformation dependson the complex temperature distribution and the thermal plastic strain. Mechanical bending such as reconfigurable press forming multi-point press forming or die-less forming has been found to improve the automation of hull plateforming because it can more accurately control the desired shape than line heating. Multi-point forming is a process in which external forces are used to form metal work-pieces. Therefore it can be a flexible and efficient forming technique. This paper presents an optimal approach to determining the press-stroke for multi-point press forming of curved shapes. An integrated configuration of Finite element analysis (FEA) and spring-back compensation algorithm is developed to calculate the strokes of the multi-point press. Not only spring-back is modeled by elastic plastic shell elements but also an iterative algorithm to compensate the spring-back is applied to adjust the amount of pressing stroke. An iterative displacement adjustment (IDA) method is applied by integration of the FEA procedure and the spring-back compensation work. Shape deviation between the desired surface and deform£d plate is minimized by the IDA algorithm.

폴리실리콘 마이크로 액츄에이터의 열구동 특성분석 (Characterization of thermally driven polysilicon micro actuator)

  • 이창승;이재열;정회환;이종현;유형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF

알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구 (Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship)

  • 배철남;황세윤;이장현;정우철;김광호
    • 한국CDE학회논문집
    • /
    • 제17권3호
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.